A Large Scale Jet in PKS 1127-145

Aneta Siemiginowska, Lukasz Stawarz, Teddy C. Cheung, Dan Harris, Marek Sikora, Thomas Aldcroft & Jill Bechtold

<u>PKS 1127-145 Jet</u>

- PKS1127-145 z=1.18 is a radio-loud Quasar
 AO1 Chandra Observation revealed a large scale jet ~300(sinθ)⁻¹ kpc
- $> L_{jet}/L_{core} < 1 \%$

$$V_{CMB}(z) = U_0(1+z)^4$$

z=1.18 => 9.75e-12 erg cm⁻³

Chandra Observations of PKS 1127-145

AO1 May 2001

AO6 April 2005

0.3-7 keV

X-ray Jet Parameters

Fitting Power Law Model:

Box	Γ	
I	1.67 ^{+/-0.11}	Flat
0	1.69 +/- 0.19	
А	1.66 ^{+/-0.15}	
В	2.0+/-0.2	Steep
С	2.2+/-0.6	

Radio Jet

* Very weak radio jet with the radio intensity increasing outwards.

- * Spectral index flattens at the outer knots ($\alpha_r \sim 0.8$)
- * Knot A < 2.5mJy at 8.4GHz (α_r >1.5)
- * ~10% polarization at knot C

ACIS-S Images overlayed with Contours of radio emission

X-ray & Radio Emission: Spectral Index

X-ray & Radio Emission: Flux

Optical/X-ray Images

Contours show ACIS-S data

Absorption of the X-ray Jet by a large Spiral Galaxy at z=0.312?

- \Rightarrow NO! Bent internal to the Jet
- \Rightarrow Observed in Radio and X-ray!

Issues for Modeling the Jet X-ray Emission

- Decrease in X-ray Flux
- Increase in Radio Flux

Steepening of X-ray continuum along the jet:

Inner Jet: $\alpha_x = 0.6$

Outer Jet: $\alpha_x > 1.0$

> Flattening of Radio Continuum along the jet:

Inner Jet: $\alpha_{\rm R} > 1.5$

Outer Jet: $\alpha_{\rm R} = 0.8-0.9$

 $> L_x/L_R$ ratio varies along the jet in a non-uniform way.

One-Zone Inverse Compton Model:

IC/CMB Model:

Compton scattering of CMB photons on cold (y~100) electrons .

At the equipartition condition high $\Gamma \ge 10$ (jet bulk Lorentz factors) are required at low redshifts. At z=1.18 for PKS1127-145 U_{CMB} is high, so $1 < \Gamma < 3$.

BUT

PKS 1127-145 Jet Morphology and Spectral properties give problems:

> Knotty morphology

=> long cooling times (>10⁹yr for γ ~100), so knots are hard to explain if the jet kinetic power has to be constant

> Difference between X-ray and Radio Spectral Indices

=> electron energy of X-ray emitting electrons lower than the radio electrons, so the X-ray spectra should follow radio spectra or be constant along the jet.

> Adiabatic Expansion -> B-field conserved

- Both IC/CMB X-ray emission and Synchrotron Radio emission should decrease
- > But in PKS 1127-145 the luminosity ratio L_X/L_R varies along the jet!
- > => No adiabatic expansion

> Amplification of B-field with no expansion:

> Radiative Cooling

One-Zone Synchrotron Model

- Non homogenous models
 - => different electron populations
- Require effective and continuous acceleration to high energies (E e~100 TeV) along the entire jet.
- Acceleration process is not clear:
 - => turbulent acceleration?
 - => magnetic reconnection?
 - \Rightarrow multiple shocks?
- > No adiabatic expansion (as seen for the IC/CMB model)
- > Requires **very high amplifications** of the B field!

X-ray/Radio (0 \rightarrow r) => $\delta^{5/2} B^{1/2}$

$$=> B_r/B_0 > 100$$

Two-Component Model: Jet+Cocoon

Modulated Jet Activity

QSO Intermittent Activity

 > Modulated Jet Ejections
 > Different spectral and spatial evolution of Radio and X-ray Emission

Jet duration Time linked to the QSO activity timescale to Create a jet => 10^5 years for PKS1127-145 Total Power in one episode: 2.5e58 erg L_{Edd} = 9e46 erg/sec => $Mdot_{Edd} \sim 1.5 M_{sun}/yr$

Summary

- Chandra Deep Image of the PKS 1127-145 Jet provides data for detailed analysis of the knots: Inner jet regions show flatter X-ray spectra than the outermost regions of the Jet.
- Jet Radio emission is very weak and the jet becomes weaker (non-detectable at 8.4GHz) at the strong X-ray emission of knot A.

=> X-rays are more efficient for jets studies

- The offsets between X-ray and radio brightness, which were detected in the AO1 data are not present.
- Constraints on the jet X-ray emission models: one zone model cannot explain the morphology and spectral properties of the jet in PKS1127-145.
- Two-zone models are promising, although the constraints on model parameters are not easily obtained from the current observations.