

The Interaction of Jets with the Interstellar Medium of Radio Galaxies

Geoff Bicknell, Ralph Sutherland, Vicky Safouris Research School of Astronomy & Astrophysics Australian National University

Ravi Subrahmanyan, Lakshmi Saripalli Raman Institute, Bangalore, India Relativistic Jets: Krakow June 26-

Outline

- Evolution of powerful radio sources from initial stages
- Effect of inhomogeneous interstellar medium – three dimensional effects
- X-ray emission linking radio and optical structure
- Supersonic turbulent disks in radio galaxies
- Restarting jets in Mpc-scale radio galaxies

Axisymmetric simulations

Mach Number = 50 $\eta = \frac{Jet density}{ISM density} = 10^{-3}$

QuickTimeŞ and a Photo - JPEG decompressor are needed to see this picture.

Hot spot

Jet shocks

QuickTimeŞ and a Photo - JPEG decompressor are needed to see this picture. Bow shock

Jets constrained to be straight

Slab jets in clumpy medium (Saxton, Sutherland & GB)

QuickTimeŞ and a Animation decompressor are needed to see this picture.

Developments and additions

- 3D (with thermal cooling via MAPPINGS shock and photoionization code)
- Potential of luminous and dark matter
- Hot isothermal ISM consistent with potential
- Clumpy ISM described by log-normal + power-law energy spectrum
- In some cases the warm ISM is distributed in a turbulent equilibrium disk

 In other cases an adhoc distribution of warm clumpy matter is used for the initial Relativistic Jets: Krak datane 26-

Turbulent disk

Near Keplerian, isothermal disk:

Mean temperature

Turbulent velocity dispersion

$$\sigma_g^2 = k\tilde{T}/\mu m_p + \sigma_t^2 = \text{constant}$$
$$\tilde{v}_{\phi}(r) = e_{\text{K}} \left[r \frac{\partial \phi}{\partial r} \right]^{1/2} e_{\text{K}} = \text{constant} < 1$$

Density distribution:

$$\frac{\bar{\rho}(r,z)}{\bar{\rho}(0,0)} = \exp - \left[\frac{\phi_G(r,z) - e_{\rm K}^2 \phi_G(r,0) - (1 - e_{\rm K}^2) \phi_G(0,0)}{\sigma_g^2} \right]$$

Supersonic turbulent disks

$$rac{ar{
ho}(r,z)}{ar{
ho}(0,0)} \;\; = \;\; \exp - \left[rac{\phi_G(r,z) - e_{
m K}^2 \phi_G(r,0) - (1 - e_{
m K}^2) \phi_G(0,0)}{\sigma_g^2}
ight]$$

In order to achieve a scale height of order the luminous core radius the turbulent velocity dispersion has to be supersonic.

7

Supersonic turbulent disks in radio

galaxies

Disk in M87 (Dopita et al., 1997)

Turbulent velocity ~ 250 km/s

Shock velocity required to reproduce emission line flux = 265 km/s

NGC 7052 (van der Marel et al. 98)

FIG. 1b

F1G. 1d

H-alpha-[NII]

HST images of NGC 7052

Velocity dispersion ~ 70 - 400 km/s

TABLE 2

HST	/FOS	SPECTRA:	OBSERVATIONAL	Setup	AND	Gas	KINEMATICS
-----	------	----------	---------------	-------	-----	-----	------------

			Post	TION					
ID (1)	Дате (2)	HST-ID (3)	x (arcsec) (4)	y (arcsec) (5)	T _{eap} (s) (6)	V (km s ⁻¹) (7)	ΔV (km s ⁻¹) (8)	σ (km s ⁻¹) (9)	Δσ (km s ⁻¹) (10)
1	1996 Aug	b	- 0.20	- 0.02	2380	- 147	36	184	31
2	1995 Sep	d, f	- 0.20	0.01	3830	- 156	21	209	17
3	1996 Aug	d	- 0.04	-0.02	2380	- 39	22	379	20
4	1995 Sep	7	0.00	0.01	2370	-42	24	421	23
5	1996 Aug	7, 9, f	0.12	- 0.02	6220	138	21	315	19
6	1995 Sep	9, b	0.20	0.01	4770	164	54	235	44

Van der Marel et al. "true colour" image of NGC 7052

3D simulations

- ppmlr <u>Piecewise Parabolic Method Lagrangian</u> <u>Remap</u>: VH1 + local enhancements for cooling & shock stability
- Non-relativistic parameters (density, Mach no) chosen to correspond with relativistic jet with same energy flux
- Synchrotron emissivity

Double isothermal potential

 $f_{
m lum}(E) \propto \exp(-E/\sigma_{
m lum}^2)$ $f_{
m dk}(E) \propto \exp(-E/\sigma_{
m dk}^2)$

Solve for dark and luminous matter self-consistently using Poisson's equation

Parameters of distribution:

Dark and luminous core radii

Dark and luminous velocity dispersions

Sample dark and luminous matter distribution

 $\frac{r_{\text{lum}}}{r_{\text{dark}}} = 0.1$ $\frac{\sigma_{\text{lum}}}{\sigma_{\text{lum}}} = 0.5$ σ_{dark}

Evolutionary phases

Disk interaction phase

Jet-driven bubble; bifurcated jet

Jet breakout

CSS => Classical radio galaxy

1:

Log density

QuickTimeŞ and a Graphics decompressor are needed to see this picture.

> QuickTimeŞ and a Graphics decompressor are needed to see this picture.

Radio and thermal surface brightness

Viewed at 30 degrees to the jet axis

QuickTime\$— and a Graphics decompressor are needed to see this picture.

> QuickTimeŞ and a Graphics decompressor are needed to see this picture.

> > 1:

More powerful jet; more holey disk

 $L_{\rm jet} \approx 3.8 \times 10^{44} \, {\rm ergs \, s^{-1}}$

QuickTimeŞ and a Graphics decompressor are needed to see this picture.

Cygnus A Radio - extent 60 kpc

Cygnus A X-ray

Evolutionary

sequence

Extended distribution of warm clumpy matter Log-normal distribution of gas with

scale height 2 kpc

QuickTimeŞ and a Graphics decompressor are needed to see this picture.

Relativistic Jets: Krakow June 26-

0.002

 $= 400 \,\mathrm{km \, s^{-1}}$

 η

 $\sigma_{
m lum}$

 $ar{n}_{
m warm}$

 $T_{
m warm}$

=

M = 10

 $D_{
m jet} = 1.2 \,
m kpc$

 $r_{
m lum} = 1
m kpc$

 $n_{\rm hot} = 0.1$

 $r_{\rm dk} = 10 \, \rm kpc$

 $L_{\rm K} = 1.4 \times 10^{46}$

 $\sigma_{\rm dk} = 800 \, {\rm km \, s^{-1}}$

 $T_{\rm hot} = 4.8 \times 10^7 \, {
m K}$

 $p/k = 4.8 \times 10^6$

= 500

 $= 10^4 \, {\rm K}$

256 cells = 25.6 kpc

Evolution of radio surface brightness

QuickTimeŞ and a Graphics decompressor are needed to see this picture.

PKS 1138-262 (De Vries, Van Breugel et al. 2005)

HST continuum

Left Liscendon (J200)

1138-282 Ly-alpha + 8.4GHz radi

No HST Ly-alpha near AGN Bright double knot where jet splits Faint emission outside radio sourc

Restarting jets: A different (Safouris, Subrahmanyan, Saripalli, GB, RS)

2:

Previous work and ideas

 Clarke & Burns 1991: Simulations of restarting jet show that new jet is overdense

Low Mach number of the leading bow shock

Lack of prominent hot spot

Kaiser, Schoenmakers & Rottgering 2000

Argue for entrainment of material into the existing lobe

Produces higher Mach number bow-shock

Simulations of restarting jet

 $\eta = 1.5 \times 10^{-3}$ M = 11.5 $\xi = \frac{p_{\rm jet}}{2} = 42.9$ $p_{
m IGM}$ $D = 3 \,\mathrm{kpc}$ $L_{\rm jet} = 1.3 \times 10^{44} \, {\rm ergs \, s^{-1}}$ Equivalent rel. jet $\Gamma = 5$ $\chi = \frac{\rho c^2}{4p} = 1$ **Background medium** $n_{\rm IGM} = 10^{-4} \, {\rm cm}^{-3}$ $ho_{\rm IGM}$ 11.2 $\rho_{\rm crit}$

log(density)

QuickTimeŞ and a Graphics decompressor are needed to see this picture.

$$t_{
m off} = 10^7 \, {
m yrs} \qquad {
m t}_{
m on} = 2 imes 10^7 \, {
m yrs}$$

Surface brightness

QuickTimeŞ and a Graphics decompressor are needed to see this picture.

Analysis of PKS 1545-321 data

 $p_{
m hs}=rac{3}{4}
ho_{
m ext}c^2\,\Gamma_{
m hs}^2eta_{
m hs}^2$

=> Density of lobe and hot spot Mach number Use arm-length ratio of inner hot spots to estimate hot spot velocity

Jet power Inner hot spots due to jittering jet

$$egin{aligned} P_{
m jet} &pprox &
ho_{
m ext} c^2 \left(rac{eta_{
m hs}}{eta_{
m jet} - eta_{
m hs}}
ight)^2 ceta_{
m jet} A_{
m hs} \ &pprox & 3 imes 10^{44}\,{
m ergs\,s^{-1}} \end{aligned}$$

- consistent with energy budget of inner lobe Relativistic Jets: Krakow June 26-

Summary

- A clumpy interstellar medium significantly influences the early evolution of radio galaxies
- Disk + Jet => 3 phases of evolution
- Memory of early phase in late-time structure
- More extended clumpy medium => highly disrupted structure typical of high redshift radio galaxy
- \diamond
- Thermal X-ray emission the link between radio and optical structure

3

• Feasible that inner doubles in radio galaxies Relativistic Jets: Krarevthe fesult of jet propagation in a polluted