Jet Structure

D. S. De Young

US National Optical Astronomy Observatory

Relativistic Jets Krakow June 2006

Overview

- Why Structure
- Observable "Structures"
- Origins of Global Structures
 - Implications for Jet Dynamics
 - Focus on Plasma Dominated Jets
- Origins of Local Structures
 - Implications for Jet Dynamics
- Summary
 - Steps Toward the Nature of Jets

Jet Structures

- Observed Structure
 - Radiative Signature
 - May be Misleading
 - Is What You See What You Get?
- Physical Structure
 - Intrinsic Structure
 - Produced at Source
 - Induced Structure
 - Produced by Environment

Why Structure?

- We Know Very Little About Jets
 - Collimated Somehow
 - Emit Non-Thermal Radiation
 - Relativistic Electrons and Magnetic Field
- We Don't Know
 - Outflow Speed (Inferred)
 - Content (Charge Neutralizing Species, Plus...)
 - Lifetimes
 - Particle and/or Field Energy Spectra
 - Therefore No Basic Kinematics

(Cf. L. Rudnick)

Why Structure?

• If We Knew What We Don't Know...

- Intrinsic Jet v, n, t: dE/dt, dM/dt at Source
- Energy Spectra: Details of Production Processes
- Strong Constraints on "Central Engine"
 - Acceleration Processes, B Field Production
 - Evolution of BH and Accretion Structures
- Constraints on Evolution of Parent Galaxies

Why Structure?

- How to Know What We Don't Know
 - Jet Structure
 - Results from a Combination of:
 - Intrinsic Jet Properties
 - Interaction With Environment
 - Jet Structure + Known Environment + Physics of Interaction
- May Yield What We Don't Know

• (Or at Least Some of It)

Unresolved Issues

- Creation of Relativistic Power Law Population
- Jet Formation and Collimation
- Jet Content
- Outflow Speeds
- Stability
- Lifetimes and Reacceleration

Global Jet Structures: FR-II Radio Sources

FR-II Radio Sources

FR-II Radio Sources:

Not "Typical" Radio Sources

Global Jet Structures: FR-I Radio Sources

FR-I Radio Sources

Radio Galaxy 3C296 Radio/optical superposition Copyright (c) NRAO/AUI 1999

Extended Extragalactic Radio Sources

- FR-I / FR-II Statistics
- Space Densities: (to $z \sim 0.3$)
 - Spiral Galaxies: $\sim 3 \times 10^{-2} \text{Mpc}^{-3}$
 - FR-I Sources: $\sim 3 \times 10^{-4}$ Mpc $^{-3}$
 - FR-II Sources: ~ 1×10^{-6} Mpc ⁻³
- Thus FR-I Objects are > 100 Times More Common than FR-II Objects

Global Jet Structures: Radio Sources in Clusters

• Head-Tail Sources – A Known Interaction?

Radio Sources in Clusters

• Still Some Mysteries...

Special Cases: The Nearest Radio Sources

- Vir A, Cen A, Cyg A
- Biggest, Brightest
- Most Detailed Structure

Special Cases: The Nearest Radio Sources

- Richest Detail
- Stimulates Most Modeling
- How Representative?
 - Do ALL FR-I's Look Like M87? no
 - Are ALL Fr-II's Like Cygnus A? no
- But Interesting Processes May be Seen
- But How Much is Weather?

Observed Structures

- Highly Collimated Jets (> 100 Jet Radii)
- Spreading Jets
- Bends, Wiggles, Plumes, Knots, Swirls, Flares, Filaments, Lines, Limb Darkening, Limb Brightening
- How Do They Arise?
- What Do They Mean?

Back to Basics

- Physical Origins of Structure
 - Intrinsic
 - Environmental
- Observe the Convolution of Both
 - How to Unravel/Deconvolve?
- Jet Interaction With the Environment
 - Mediates Mass, Energy and Momentum Transfer

Hydrodynamic Interaction

- Kelvin-Helmholtz Instability
 - Interface Between Fluids in Relative Motion

K-H Instability

- Linear Regime:
 - Perturbations Unstable at All Wavelengths in the Absence of Restoring Forces $\Delta U^{2} \ge [2(\rho + \rho_{2})/\rho_{1}\rho_{2}] \{T(\rho_{1} - \rho_{2})\}^{1/2}$
 - Shortest Wavelengths Most Unstable $\Gamma = k\Delta U(\rho_1 \rho_2)^{1/2} / (\rho_1 + \rho_2)$

K-H Instability

- Quasi-Linear Regime:
 - Waves "Break"
 - Vorticity Created
 - "Cat's Eye" Structures Form

K-H Instability

Fully Non-Linear Regime:
Development of Turbulent Mixing Layer

Mixing Layers

Entrainment Very Effective

- "Ingest – Digest" Process

Mixing Layers

Thickness Grows with Distance/Time

Tan $\phi = C (\rho_L / \rho_H)^{\alpha} (v_{REL})^{-\beta}$

• Mixing Layer Can Permeate Entire Jet

Interaction Via Surface Instabilities

- Non-Linear Phase Creates Turbulent Mixing Layer
 - Entrains Ambient Medium
 - Transfers Momentum and Energy to Ambient Medium
 - Mixing Layer Can Penetrate Entire Jet Volume
 - Can Decelerate Jet to Subsonic Drift Motion
 - Can Be Fatal to Jet

Mixing Layers

- Growth of K-H Instability and Mixing Layers is Inhibited By:
 - Compressibility
 - Spread of Initial Velocity Shear in Transverse Direction
 - Supersonic Relative Speeds $Tan \phi \propto M^{-1}$

Supersonic Mixing Layers

 K-H Instability and Mixing Layers in Supersonic Flows

Relativistic Jets

- Data Very Sparse
 - Use Numerical Simulations
 - (Marti et al., Aloy et al. 1999-2003)
- 3D Simulations Show:
 - Development of Shear/Mixing Layers
 - Rigidity
 - Deceleration

Relativistic Jets

- Deceleration Due to Surface Instabilities
- 3D Simulations
 - Aloy et al. 2000, Bodo et al.2003

- Remove Isotropy
- Add Viscosity
- Stabilize In Principle $\Gamma = 0.5 | k \cdot U_R | [1 - (2 v_A k \cdot B)^2 / (k \cdot U_R)^2]^{1/2}$ - or, stable if $M_A = U_R / v_A \le 2$ - for $k ||B||U_R$

- Numerical Simulations Required
 Jones et al. 1996 2000
- Two Dimensional MHD
 - Still Mixes for Beta > 1
 - Enhanced Local Fields
 - "Cat's Eyes" Destroyed
 - Turbulence Suppressed by Geometry, Boundaries

- Three Dimensional MHD
 <u>Enhanced Local Fields</u>
 - For High Beta > 100
 - Evolves to Turbulence
 - Turbulent B Amplification
 - Enhanced Dissipation due to Magnetic Reconnection
 - Instability Remains
 "Essentially Hydrodynamic"

Ryu, Jones, & Frank 2000

3D MHD Simulations (S. O'Neill, T. Jones, I. Tregillis, D. Ryu 2005)

 ۵
 0

M = 30

M = 120

Jet – Environment Interaction

- Penetration of Turbulent Mixing Layer Throughout Jet Volume
 - Since $\operatorname{Tan} \phi \approx C \left(\rho_{\rm J} / \rho_{\rm Amb} \right)^{-\alpha} \mathrm{M}^{-1}$
 - Then Mixing Layer Thickness = Jet Radius at $\Delta R = L_{MIN} Tan \phi = R_{Iet}$
 - or $L_{\rm MIN} \approx C' R_{\rm Jet} M (\rho_{\rm J} / \rho_{\rm Amb})^{\alpha}$

• At This Point Jet Is Fully Mixed, Turbulent

Induced Jet Structure

- Saturated, Turbulent Jet Has Now
 - Entrained Mass from Ambient Medium

• (Bicknell 1984, De Young 1982, 1986)

- Accelerated and Heated this Mass
- Significantly Decelerated, Possibly to Subsonic Plume
- Locally Amplified any Ambient or Entrained Magnetic Fields

Could Explain FRII – FRI Dichotomy (De Young 1993, Bicknell 1995, Liang 1996)

Radio Galaxy 3C296 Radio/optical superposition Copyright (c) NRAO/AUI 1999

• And The FRII – FRI Dichotomy

 Essential Inference: Decelerated, Subsonic Flow

- Decelerated Jet Modeling With Shear Layers
 3C31, 3C315
 - Laing et al. 2001 2006
 - Requires Some Additional Assumptions

- Laing & Bridle 2002

- Specific Example Centaurus A
 - Kataoka, Stawarz, et al. 2006

- Limb Brightened in X-Rays

- Spectra Consistent with Turbulent Acceleration

- Could Explain
 - Transport of Astrated Material to Extragalactic Scales via Mass Entrainment
 - Emission Lines in ICM and Outside Galaxies
 - Cooling and Jet Induced Star Formation
 - Extragalactic Blue Continuum
 - Dust Formation; Alignment Effect at Large z
 - Injection of Metals into ICM
 - Contamination of IGM at Very Early Epochs

Local Jet Structures: Internal Shocks and Hot Spots

- Require Special Circumstances:
 - Changing Jet Input
 - Impulsive or Driven
 - Local and Sudden Change in External Medium
 - Ambient Pressure Changes
 - Ambient Density Changes
 - Jet Expansion
 - Jet Bending
 - Jet Disruption

Internal Shocks: Effects

- Partial Thermalization of Flow
- Particle Acceleration
- Magnetic Field Compression $B_1 \approx B_0(\gamma+1)/(\gamma-1)$
- Radiation
 - Thermal

 $T_1 \approx T_0 (2\gamma M_0^2) / (\gamma + 1)^2$

- Non-Thermal $P_{Synch} \propto B^2 E^2$
- All Independent of Origin

Internal Shocks: Dissipation

Standing Internal Shocks

- Mostly Oblique

Mostly Redirect Flow – Internal "Weather"

• Not Disruptive

- Mostly Convert Energy $\rho_{\rm V}^2 \rightarrow \Delta T, \Delta B^2, \Delta E$

Impulse Driven Internal Shocks - Transient

Extragalactic Internal Shocks

3C273 Marshall et al. 2001

Extragalactic Internal Shocks

- Dissipative and Radiative Losses "Small"
 Jet Not Disrupted, Hence:
 - Shocks Are Weak and/or Oblique
 - X-Ray and Radio Luminosities from Knots (Modulo Beaming) << Kinetic Energy Flux
- But Emission May Be Indicators of Jet Flow Speeds and Particle Acceleration
 - E.g. SSC vs. IC on CMB

Extragalactic Internal Shocks

Modeling of Induced Internal Shocks
 Via Variations in Output of Central Engine

Specific Jet Internal Structures

- M87 Jet Internal Hotspots
 - "Double Helix"
 - Lobanov, Eilek & Hardee 2003

 Linear K-H Instability – OR Li et al. 2006

Specific Jet Internal Structures

- M87 Jet Internal Hotspots
 Spectral Index Distributions
 Particle Acceleration/Injection Perlman et al. 2004
 - Inverse Compton Processes
 - B Field Limits
 - Stawarz et a. 2005

Radio

α, ro

α。

Termination Shocks

• (Beware Axisymmetric Calculations)

• Actual:

Termination Shocks

 May Be The Major Source of Energy Dissipation for Non-Infiltrated Flows

 May Be The Major Source of Turbulent Energy in Radio Lobes

Other Jet Structures

- "Poynting Flux" Jets
 Very Interesting Alternative
 - But More Work Needed

5

• Li et al. 2006

Other Jet Structures

• Can Poynting Flux Jets Do This?

- Induced Structures Interaction with Environment
 - Production of Mixing Layers Seems Universal
 - Basically Hydrodynamic for $\beta > 1$
 - Strong Mixing
 - Deceleration
 - Turbulence
 - Transport of Astrated Material Outward

- Small Scale Structures Knots, Bumps, and Wiggles
 - Can be Intrinsic, Can be Induced
 - If Induced (Pressure, Density Gradients)
 -Probably "Weather"
 - If Intrinsic (Changes in dE/dt, dM/dt ..) Can be Significant Indicators of "Central Engine" Parameters

Strong Interaction with Environment - Can Produce Fully Mixed, Turbulent Jets • (Particle Dominated Jets) Can Basically Reproduce FR-I Geometry • Fast & Light – Not for Long

 This Accounts for 99% of Extended **Extragalactic Radio Sources**

• The FR-II Problem

- Heavy or Very Relativistic Jets?
 Enormous dE/dt_total E
 - Enormous dE/dt, total E
- "Poynting Flux" Jets ?
- Are FR-I and FR-II Objects Intrinsically Different?