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* Part |: Introduction — Short Review of
current situation.

 Part |l Difficulties for application of
physics
* Part lll: Jet Structure
hotspots, continuous, and knots
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CREDO -1
( a personal perspective)

* Sync. emission is hopelessly mired in the
uncertainty of the value of B: total E; pressure;
halflife, etc. Very tenuous passage to N(E)

* |C/CMB is not much better because I' is
uncertain. Throughout this talk | use lower case
y for the Lorentz factor of the radiating electrons
and upper case [ for the bulk Lorentz factor of
the jet. 0 is the Doppler beaming factor.
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Electron Halflives

T 1013 years

vy {B#*40(1+2)*?}

* for Synchrotron; X-ray frequencies of 10'® Hz,
y= 0.0005 V[v(1+z)/B(1)] = 107,
and 1 is of order a year.
IC/CMB with I > 5 (often >10)

v={2x10¢ /T } Vv and for v=108, y = 100
and 1= 10° years
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CREDO -2
The X-ray Emission Process for
Quasar Jets

* Whereas there is little debate about radio and
optical for both FRI and quasar jets, there is no

concensus for the X-rays from quasars and FRII
radio galaxies.

* SYNC with y = 107 and halflife = 1 year (like FRI);
OR

* |C/CMB with y = 100 and halflife 2 100,000 years
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X-ray Emission from Jets
is a “Win-Win” Game
Either we get info about the very top end of the

relativistic electron spectrum, N(E),
OR we learn about the very bottom end!

kkhkkkkkkkkkkkhkhkhkkkkkkkkkkkkhhkhkkkkkkkkkkkkhkhkhkkkkkkkkkkk*

NEITHER END IS ACCESSABLE
BY OTHER MEANS

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

* and now for the bad news.....we don’t know which end we are looking at!
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CREDO - 3

* essentially all X-ray jets are single sided;
hence the [',0 [of the emitting plasmas]
are of order a few or greater.

* The emitting plasmas consist of relativistic
("hot”) electrons, but the “fluid” responsible
for the energy flow consists of cold pairs,
normal plasma (p + e), or Poynting flux.

Krakow - 2006 June 27



Part Il: Difficulties of applying the
physics

* \We want to obtain the parameters of the
emitting regions....the exponent of the
power law describing N(E); break
energies; cutoff energies; B field strength;
beaming factor, 6, & I'. Plus all the
derived quantities like energy content,
pressure, etc.

Krakow - 2006 June 27



Synchrotron Assumptions

<B>is a valid concept; usually B,

Emitting volume is same for all wavebands
SED is concave downwards, with cutoffs.

filling factor~1 (as opposed to filaments of
high B with particles both between and
within the filaments )
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IC/CMB assumptions

single emitting volume containing a single
PL extending from circa y=50 to y=500000

[ is large enough to produce obs. X-rays
B, required to pass from radio to N(E)

p=2a.+1 is the exponent of lower part of
N(E), as well as of the ‘observed’ part.
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The next image......

* shows the extent of the extrapolation (in
frequency, or, top axis, electron Lorentz
factor) between the observed segment of
the spectrum of a knot in a jet, and the
segment responsible for the X-ray
emission for the IC/CMB process.

* |t also demonstrates that new radio
telescopes under development will help to
test this extrapolation.
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...the emitting volumes may not
actually be the same size as for the
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Emitting Volume:
Multi zone models:

* Laing and Bridle have modeled some FRI
jets and argue for the necessity of velocity
structure across the jet

* Celotti and others have suggested a fast
(Fr'>10) spine plus slower sheath on kpc
scales.

* Uchiyama (poster #49) and Jester et al.
find that a single zone is inadequate for
the SED of parts of the 3C273 jet.

Krakow - 2006 June 27



Emitting Volumes:
Multizone Models

This permits more latitude for adequately
fitting SED’s, but any 2 zone model
normally precludes the critical tests
afforded by comparison of radio, optical,
and X-ray data.
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In the next slide.....

* Note the prominent X-ray emission beyond
knot C where the radio contours show a
Kink to the north. In the bottom panel, we
see the hardness ratio for this feature
differs from that of knots B and C.
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PART Illl: Features

* Hotspots
 Continuous emission between knots
* Knots
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Distinguishing Hotspots from Knots

...................................................

Terminal HS where jet
stops, but is emission | e
always isotropic? £ . ),

‘Classically’ SSC explains - ’ "Q«J

the X-rays, but there

appears to be additional : TP
emission. g o>
3C351: at least a factor of

25 between1.4 GHz -

power of Nand S HS’s. -

Hardcastle will discuss on- ,
Friday. 8
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Continuous Emission between the
knots

* If synchrotron, requires distributed
acceleration (e.g. magnetic acceleration or

boundary layer shear acceleration, ref. our
hosts at this meeting)

* Could be underlying IC/CMB component.

* |n either case we might expect a, to vary

between knots and inter-knot regions.
Current evidence does not support this.
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Conventional knots:
shock acceleration

* Downstream from the shock, we expect to
loose’ the highest energy electrons
sooner than the lower energies and we
assume that we can use distance from the
shock as an ‘age’ indicator.

* Sync: X-ray brightness should drop faster
than radio.

* |C/CMB: opt. & rad. should drop faster
than X-ray
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Alternatives to Shocks for Knots

* CHANGE OF DOPPLER FACTOR:

* from change of [' (unlikely), or

* from change of 6 (e.g. helical trajectories)
* ‘BURST TYPE EJECTION FROM SMBH.

* CONTRACTION - EXPANSION (i.e. not
necessarily in a shock)
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EXPANSION LOSSES

SYNCHROTRON * INVERSE COMPTON
all electrons lose same * all electrons lose same
fractional E fractional E
emissivity drops «B? * [u(v) drops for SSC]
N(E) is smaller for fixed  for IC/CMB. there
observing band. : ’

r Is only one
there are 3 effects ., nribytion to
reducing the decay.

emissivity!
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Compression/Expansion for
synchrotron emission with a fixed
observing band.

In the high state {e.q.
after compression), o
fixed observing band
scamples a lower
segment of N(E)
bhecause of the
change in the
magnetic field. The
amplitude will be
larger and the
spectrum harder than
that found using the
I same band when

MN(E) is in the low state
(e.q. after expansion).

O

]
log eleciron energy




Knots from curved trajectory

* Enhanced emissivity could arise from a
change in the beaming factor.

* The larger I required for IC/CMB models
means that Q should have higher contrast
knots than FRIs since the emission cone is
smaller for larger .
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? — What path does the fluid follow

Straight line
(‘ballistic’) ?
Helical ?

NB: a curved
trajectory with
beaming is a good
way to explain the
occurrence of knots.
It also relaxes
constraints on the

Jet angle to the Il.o.s.
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Digression: Sizes & Luminosities

GRB, uQ, FRI, FRII+Q jets are all very
pretty; being long and narrow..... but they
are of vastly different scales! Don't expect
identical physics!
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g:-. The 1.6 kpc jet in Ma7

A42:30:52.0

, -;?m"..'

The 1 pc size of GRE & micro Q l



3C273 at same brightness scale as
M87

jet outside the galaxy M&87 jet within galaxy

Comparative physical sizes

& -
M87 L)

Ol

1 kpc (projected)




Compare 3C 273 with M87:
Parameters for a bright knot

3C 273 M87
0.5" = 1300pc * 0.5" = 38pc
L = 10% ergs/s « L =10 ergs/s

B, = 0.27 evps/0.05"p  + B, = 5.5 evps/0.05”p
a <1 >
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Or aII together for a single view:
1 kpc




Comparative Sizes: log scale

(missing from this plot are typical VLBI extragalactic jets)

Observed Lx vs. Projected Size
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Projected vs. Physical Length
via ‘best guess’ 0
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Morphology: X-ray & Radio

* X-ray peaks upstream of radio in knots D & F

Chandra: sum of 18 observations

: VLA 8 GHz contours (increase by factors of 2)
310 (057 FWHM)

| 12:23:30.0

3 49.2 491 12:30:49.0 489 48.8

o T ey WA R A e T
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8 GHz 2003Jun 0.5

HST: 220nm 2003Feb

Chandra A to V

4075.902 4085.903
‘A4 N = A AT A 1O




M87 Spectral Changes

* Downstream from the core region, and
also from knot A, the X-ray spectrum

softens.

* The next slide shows the X-ray jet in 3 X-
ray bands, with brightness labels.
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340 MB87: Soft Flux (0.2-0.7keV)
(E-15 erg/cm”2/s)

M87: Hard flux (2—6keV)
(E-15 erg/cm”2/s)

49.2

Epochs Ato S

48.6



Offsets in 3C 273 and PKS1127

* |n a sense, these sort of offsets seem to
be scale invariant since we see similar
properties for these powerful sources, but

on a larger scale.
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3C273 offsets

3C273 inner section at 0.5"

15GHz VLA image: HST linear contours F : 3C273 at 0.5" FWHM

" ACIS-8 image, HST linear contours
B 06 0

i SR
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PKS 1127 offsets




offsets & progressions=2 sides of
same coin

* If we were viewing 3C273 at z=1.1, the jet
would be unresolved, but there would be a
very obvious offset between peak
brightnesses: X-ray peaking closer to the

guasar, optical and radio progressively
further downstream.

* i.e. the internal (unresolved) structure of a
knot of PKS1127 could look like this.....
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Variability

* In addition to M87, variability is also seen
in features of Cen A (Kraft et al.)

* The knots of powerful Q are generally too
large physically for this test.
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Project: 4 years of monitoring
the M87 jet with Chandra

The Nucleus varies,
as expected.

HST-1 varies and

has peaked at 50x the

2000Jul level.
knot D probably
varies.

knot A shows a mild
decay.

knot A
>
khot D
\\ HST-1: 0.8"=60pc (projected) from nucleus
Nucl f the galaxy
49 49.0 a8 a8
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keV/s; 0.1 mdy for UV; Jy for radio

10

HST-1 Lightcurves

Solid: X—ray {(evtl > 0.2keV)
Dotted: 220nm
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Decay Time

X-ray: suspect that 1(sync)<light trv.time
Optical: ? may flatten after initial drop
Radio: ?

If all drop together; expansion or change 0

If optical and radio are slower, should get
a new estimate of B field
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M87: L band, 2005 Jan 13

HST-1; 0.86"° from the nucleus

0.4 ne 04 1 1.



2005 Jan 13

2005 May 22

2005 Oct 27

e e




M87: L band, 2005 Jan 13

/
2005 May 6
40 mas
. @j e 0
2005 May 22

w W
Q « 2005 Oct 27




1994-1998; same thing but optical
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Superluminal optical features
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Parameters for components

1994-1998 optical
nucleus->hst-1: 0.87”
B(leading): 0.84+0.1
B(following): 4 to 6
size: < 4pc

overall size: 24pc

2005 radio
nucleus->hst-1: 0.86”
B(leading): 1.0£0.1
B(following): 2.8

size: 10mas or 0.7pc
(expected 1mas, 0.1pc)

overall size: 3pc

date when following was
at leading: 2001 Sep
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The Red Queen’s Race

The upstream edge of HST-1 appears to
be moving away from the core with a
velocity close to c; yet 10 years later, it
has not advanced.
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Variability: 1980-2004

® nO eVIdenCG fOr a M87: ‘Core’ and "knotA’

o comparable outburst

Core: =clid line
knotA: dashed line

35,0
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£95 .0

1985 1990 1205 2000

D:50.0. . 49.5 49.0 485 11 48C Dt {s)
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