THE INTERACTION OF MICROQUASARS WITH THE ISM

SEBASTIAN HEINZ
MKI (≤08/2006)
UWMADISON (>08/2006)

THE INTERACTION OF MICROQUASARS WITH THE ISM

Andrea Merloni, Hans Jakob Grimm, Rob Fender, Elena Gallo, Christian Kaiser, Rashid Sunyaev, Miguel Angel Aloy

THE IMPORTANCE OF AGNJET-IGM INTERACTIONS

* Kinetic energy deposition into environment (feedback) can:

- Stop cooling in gas reservoir
- Blow away IGM L_{kin} up to 10^{46} ergs s⁻¹
- Disrupt accretion flow
- Seed magnetic field/relativistic particles into environment
- Induce large scale motions & turbulence into environment

RADIO SOURCE DYNAMICS

RADIO SOURCE DYNAMICS

RADIO SOURCE DYNAMICS

- XRBs make jets
- Jet power can be significant fraction of L_{Edd}
- XRB jets must run into the ISM
- What happens then?
 - Radio lobes
 - Thermal shells
 - Hot spots (termination shocks)

LOBES

"Microquasar" radio lobes:

- Do they exist?
- Are they detectable?
- Probes of jet physics & environment
 - Calorimeters
 - Chronometers
 - Particle sources
- Impact on the Galaxy:
 - Cosmic rays
 - Magnetic field

Circinus X-1 (Fender et al. 1999)

SS433 (Dubner et al. 1998)

1E1740.7-2942 (Mirabel et al. 1992)

GRS 1758-258 (Hardcastle 2005)

- \ll Critical quantities: W_{jet} , R_{jet} , p_{ext} , ρ_{ext}
- Dimensionless number:

$$\eta \equiv \frac{\rho \, c_{\rm s}^3}{W_{\rm jet}/R_{\rm jet}^2} \propto M_{\rm BH} \, p \, c_{\rm s}$$

** η the same <u>only</u> if $p_{\text{ext}}c_{\text{ext}}M_{\text{BH}} = const.$

- * Critical quantities: W_{jet} , R_{jet} , p_{ext} , ρ_{ext}
- Dimensionless number:

$$\eta \equiv \frac{\rho \, c_{\rm s}^3}{W_{\rm jet}/R_{\rm jet}^2} \propto M_{\rm BH} \, p \, c_{\rm s}$$

* η the same <u>only</u> if $p_{\text{ext}}c_{\text{ext}}M_{\text{BH}} = const.$

* But: $(p c_{\rm s} M)_{\rm AGN} > 10^4 (p c_{\rm s} M)_{\rm XRB}$

$\ll \eta_{\rm XRB} < 10^{-4} \eta_{\rm AGN}$

XRB environment (ISM):

low pressure, low density compared to AGN environment (IGM)

XRB radio lobes must be <u>larger</u>

XRB radio lobes must be <u>dimmer</u>

Radio lobe size:

$$R \approx 10 \,\mathrm{pc} \,\left(\frac{\langle W \rangle}{10^{36} \,\mathrm{ergs}\,\mathrm{s}^{-1}} \frac{1 \,\mathrm{cm}^{-3}}{n_{\mathrm{ISM}}}\right)^{0.2} \left(\frac{t_{\mathrm{age}}}{10^5 \,\mathrm{yrs}}\right)^{0.6}$$

Radio luminosity:

$$L_{\rm 5GHz} \approx 1 \,\rm Jy \, \left(\frac{\langle W \rangle}{10^{36} \,\rm ergs \, s^{-1}}\right)^{1.3} \left(\frac{t_{\rm age}}{10^5 \,\rm yrs}\right)^{0.4} \left(\frac{n_{\rm ISM}}{1 \,\rm cm^{-3}}\right)^{0.45} \left(\frac{10 \,\rm kpc}{D}\right)^2$$

Radio lobe size:

$$R \approx 10 \,\mathrm{pc} \,\left(\frac{\langle W \rangle}{10^{36} \,\mathrm{ergs}\,\mathrm{s}^{-1}} \frac{1 \,\mathrm{cm}^{-3}}{n_{\mathrm{ISM}}}\right)^{0.2} \left(\frac{t_{\mathrm{age}}}{10^5 \,\mathrm{yrs}}\right)^{0.6}$$

Radio luminosity:

$$L_{5\rm GHz} \approx 1 \,\rm Jy \, \left(\frac{\langle W \rangle}{10^{36} \,\rm ergs \, s^{-1}}\right)^{1.3} \left(\frac{t_{\rm age}}{10^5 \,\rm yrs}\right)^{0.4} \left(\frac{n_{\rm ISM}}{1 \,\rm cm^{-3}}\right)^{0.45} \left(\frac{10 \,\rm kpc}{D}\right)^2$$

* Surface brightness. $T_{\rm B} \approx 50 \,\mathrm{mK}$

$$S_{5\,\rm GHz} \approx \frac{20\,\mu\rm{Jy}}{\rm{arcsec}^{-2}} \left(\frac{\langle W \rangle}{10^{36}\,\rm{ergs\,s}^{-1}}\right)^{0.9} \left(\frac{t_{\rm{age}}}{10^5\,\rm{yrs}}\right)^{-0.8} \left(\frac{n_{\rm{ISM}}}{1\,\rm{cm}^{-3}}\right)^{0.85}$$

CYGNUS X-1 The Ring of Fire

CYGNUS X-1 The Ring of Fire

- Size: 5 pc (diameter)
- Shock temperature: $10^4 \text{ K} < T < 3 \times 10^6 \text{ K}$
- Shock velocity: $20 \text{ km s}^{-1} < v < 360 \text{ km s}^{-1}$
- Source age: 2×10^4 yrs < t < 3.2×10^5 yrs
- * Power: $10^{36} \text{ ergs/s} < W < 10^{37} \text{ ergs/s}$

For comparison:

 $L_{\rm bol} \sim 10^{37} {\rm ~ergs~s^{-1}}$

CYGNUS X-1 The Ring of Fire

WLBA jet:

Stirling et al. 2001

* $W_{\text{jet}} \approx 2 \times 10^{33} \,\text{ergs s}^{-1} f_{\text{p}^+} f_{\text{fill}}^{-2/3}$

$$W_{\rm lobe} > 10^{36} \, {\rm ergs \, s^{-1}}$$

- Low synchrotron filling factor: $f < 10^{-4}$
- Proton loaded jet: > <u>500 protons</u> per radio electron
- ⇒ That explains why the cavity is not filled by radio emission

RADIO-X-RAY RELATION

Corbel et al. 2002, Gallo, Fender, & Pooley 2003

RADIO POWER vs KINETIC POWER

Jet power is related to synchrotron core luminosity as:

$$L_{\rm r} \propto W_{\rm jet}^{1.42 + \frac{2}{3}\alpha_{\rm r}} M^{-\alpha_{\rm r}}$$

Heinz & Sunyaev 2003

Grimm et al. 2004

X-ray \rightarrow radio \rightarrow jet power $\propto L_x^{0.42}$

 W_{jet} [ergs s⁻¹]

^{*} X-ray → radio → jet power ∝
$$L_x^{0.42}$$

** Normalization:

- + AGN jets (M87, Cyg A, Perseus A, ...)
- XRB radio lobes: Cyg X-1

JET PROPAGATION (DIAGNOSTICS)

GRS 1915+105 TEXTBOOK EXAMPLE OF SUPERLUMINAL MOTION

 $300 \operatorname{mas} \approx 0.02 \operatorname{pc} \approx 4 \times 10^{10} r_{\mathrm{g}}$

XTE J1550-564 HOTS SPOTS

Corbel et al. 2002

XTE J1550-564 <u>Нотѕ Spots</u>

XTE J1550-564 HOTS SPOTS

Corbel et al. 2002, Tomsick et al. 2003

1H 1743-341

2004 February 12

2004 March 24

2004 March 27

BULLET DYNAMICS

 $d\left(\beta\Gamma\right) = -C_{\rm d}\Gamma^2\beta c\,d\Delta M$ 影

Ram pressure (dynamical friction) 影

$$C_{\rm d} \approx 1/3$$

Ram pressure confinement: 影

 $p_{\rm b} \approx p_{\rm ram}$

Heinz & Aloy 2006

XTE J1550-564

Implication: <u>low</u> density environment ... $n < 10^{-4} \text{ cm}^{-3} \alpha_{1^{\circ}}^{-2}$ 彩

XTE J1550-564

- * For jets in GRS 1915+105, XTE J1550-564, GRO J1655-40:
- Unless microquasar jet opening angles are pathologically small:

These jet must have excavated dark radio lobes

- Wrt. the ISM, microquasars do the same things AGN jets do qualitatively
- * The ISM provides a <u>much weaker</u> barrier against the jet thrust
 - Thus: XRB lobes are bigger and dimmer
- Analysis of shocked shells (e.g., Cyg X-1) powerful diagnostic
 - Jet power: $\langle W_{\rm tot} \rangle \approx 5 \times 10^{38} \, {\rm ergs \, s^{-1}}$
 - Composition: > 500 protons per radio electron
- # Jet propagation into ISM: <u>decelerating</u> hot spots
 - dynamical probes of environment:
 - fossil radio lobes (like in AGNs)