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Outline

E Brief introduction
v Sub-pc to Mpc connection (from “blazars” to “Rad Gal”)

E Multiband study of large-scale jets.
v' Comparative study of knots, hotsopts, and lobes

v" Merits/demerits of beamed IC/CMB

B Toward nature of “bright” X-ray jets
v Non-standard Sync emission and acceleration

v Observation of jet structures
v Jet contents



AGN Jet: introduction

low power (FRI, BL Lac)

high power (FRIl, QS0)

B.H sub-pc kpc ~ Mpc
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>
B Viewing angle is a key to identify various classes in AGNSs.

F Blazars’ emission come from the most inner part of the jet,
via the internal-shock in sub-pc jet.

B Large scale jets in powerful radio galaxies (FR [I/QSO) extend to
Mpc scale: internal and/or external-shock ?
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‘Blazar” region (sub-pc~ pc jet)
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E Smooth Sync between radio and optical.
m Parameters degenerate as L .o u, u; V.
E Proper motions are often difficult to observe.
B Jet/c-jet provides only weak constraint (e.g., [~ 2 for M37).

B Lack of variability prevent us imagine size of distant sources.
B Physics of kpc/Mpc jets are much more unclear!



Why large scale jets important?

B Only ~ 1% of kinetic energy would be converted into radiation
in sub-pc jet, as also implied from an internal shock scenario.
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F An ideal laboratory for jet interaction, heating, and large-scale
structure formation of hotspots and lobes.

B Recent X-ray observations adds NEW clues to jet physics!
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X-ray jets: Data Sample

Marshall+ 02; Comastri+ 03 ... and many !

X-ray M87 (FR-I) 219(FR-II)

E 44 radio galaxies detected with Chandra/XMM by Dec.2004.

(see http://hea-www.harvard.edu/XJET/index.cgi by D.Harris for most
recent information. # of detected source reached to 75 as of June 2006!)

B 56 jet-knots, 24 hotspots, 18 radio lobes (ASCA+SAX).

B 13 FR-I, 13 FR-II, 14 QSOs, 4 blazars.
B Nearest: Cen A (z=0.00183), Farthest: GB1508 (z =4.3)


http://hea-www.harvard.edu/XJET/index.cgi
http://hea-www.harvard.edu/XJET/index.cgi

Radio-to-X-ray Comparison
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Radio-to-X-ray Comparison
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‘Beamed” IC/CM®B : Method
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B Only jet-knots are bright in X-rays, in the sense L., ,/L.;.,,> 1.

B Calculate “expected” X-ray fluxes for IC/CMB (or SSC for hotspots)

We expect that...

production of X-rays in a homogenous region, under u_= ug.

F Too bright X-ray jet-knots could be explained by considering

an appropriate beaming factor as L. ¢

O or Lggo o 0972,



Beamed IC/CM®B : Results

JK+$tawartz 05 (also Hardcastle+04, Croston+05)

55 |:| jet-khot | y 151
EEEEE hotspot
I |obe

10

o0
%!

%

0
%

P

%
K

XX

XXX
&K

XX

x3

xY

XN
XD

XX4
CRAS
Q

(XX

o
K

9

XXX
0% % %%

0%

X

58

XX

%
0,

AR RAAAR AR R A RS
AAAAAANAANAANNAN

04
XX

¢
X
be?:

%
%

3;3:2-: H ’0‘0‘0:'0"
R3S Tene: 7 [ERRRRR =
oL IR [ 3 . ,
1 0 1000 : 10 100
Magnetic field B, [UG] Beaming factor o

¥ Distribution of B, that can reproduce the radio/X-ray luminosities.
m B-field is significantly enhanced in the hotspot?

B For the hotspots and radio lobe, o [11 is expected, as expected
from the “terminal point” of the jet. (assumption of u_= u;is valid.)

¥ 0 [J10 required for most of the jet-knots.

m Maybe jets are relativistic even on kpc-Mpc scales?
also see, Sambruna+04
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Beamed IC/CM®B : Results
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¥ 0 [J10 required for most of the Jet-knots.
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also see, Sambruna+04



Warning Signal (1) : beaming?

blazars Radio galaxies
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 Not only powerful QSOs (e.g.,PKS0637, 3C273), but also several FR-II
jets are “bright” in X-rays (Pictor A; Wilson+ 01, 3C303; JK+ 03 efc ...).

E The X-ray enhancement due to relativistic beaming is hardly expected,
as viewing angles of FR Il are generally large!

E If we give up “u,~ u;” assumption, the magnetic field must be as
small as B ~ 0.01 B__, meaning that u_~ 108 u; for extreme cases!.

eq’



Warning Signal (2) : z-dependence?

104

o Sync % %
1072 + ssC 1 JK & Stawarz 05,
® EC | | | see also Marshall+ 05
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Redsft: z

L
E prediction from IC/CMB: 2= O ugyg (1+2)* &
R

m “Distant jets should be brighter in X-rays”

B No such trend ?... large variations even in same objects.
B “Jeceleration’ ?, but many difficulties! (e.g., Hardcastle 06)



Warning Signal (3) : offset?

Siemiginowska+ 02 offset

s Ha(dcastle+ Q3
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B Many jet sources show “offsets” between radio and X-ray peaks,
in most cases, X-ray peak intensities “precede” the radio.

B Reality of one-zone model? (different jet structure?)

m X-rays emission process other than IC/CMB?



Warning Signal (4) : jet speed?
Scarpa & Urry 02 Wardle & Aaron 97, Giovannini+ 01
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F From the optical/radio measurements of jet/c-jet ratios in sub-pc/kpc
scale jet, most probable values for the jet speed and inclination are:

=0.90-0.99,6020deg ® [,< 5, 30afew

B Even powerful QSO jets may NOT so fast on kpc-Mpc scales!



Stratified Jet? : IC/CMB Model

High I
(spine) Low T

tht

* Two-zone jet models (e.g., Celotti+ 01):

v'“fast spine” + “slow layer (sheath)”.

v Not only CMB, but emission from slow
layer contributes as “seed photons”.

B Basic idea:
v slow layer ® Radio (sync)
v fast spine m X-ray (inv Comp)

A

VF, Spine

Layer
>
48

E However....
v’ X-ray spectra significantly softer than radio.
v" in order to reproduce 3C273 knot-A,

... .~50-100"! (see, Jester+ 06)

spine



3C120: “Non-standard” Sync ?
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B Convex X-ray spectrum for k25.

B Difficult to explain either by
conventional Sync or IC/CMB

model! (Harris, Mossman, Walker 04)



3C120: “Non-standard” Sync ?

10_34 gl T TTI T 1T T T T T T T T T

e e m e gee ey
30.0 - 10—25;
10-%%
10—2?;
1072 |
10—%%

1030 E

Flux Density (cgs)

1051 ;

10-®

B Convex X-ray spectrum for k25. 7 E
& Difficult to explain either by :;

conventional Sync or IC/CMB 8

model! (Harris, Mossman, Walker 04) 5 | ]

1017 1618

Frequency (Hz)



“New " Evidence for “Sync X-ray Jet”

lfn} Inner Hrlm’rs | Sbitzlerl [

Uchiyama+ 06, poster #49 o
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¥ IR imaging of the jet of 3C 273 by SPITZER clearly confirms that the
optical jet emission is dominated by the 279, high E component.

E Both the radio and optical components are linearly polarized to a
similar degree of ~ 15%, most likely Sync in origin.

E Due to a smooth connection between optical and X-rays, X-ray jet is
possibly Sync in nature (leptonic? hardronic? still under debate!)



Sync X-ray bump in KN regime?

Dermer & Atoyan 02, Moderski+ 05
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F Assuming electrons lose energy predominantly due to IC radiation.

m IC cross section reduces significantly in the KN regime
compared to a canonical dy/dt oc y-2relation.

® Very high energy electrons, Y, <Y < Ymax, dO NOt cool effectively,
that may result in a “characteristic bump” observed in X-rays.



Turbulent Acceleration?

spine layer
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B Again, stratified jet! — “spine” + “layer”.
B Accel. process in layer is quite different.

3n. [ ¢ ]2
tacc~ Cp [VA] ~ 5X1 09y8 B-1100uv-2A,8 [S]

L |%c 15 -1 2
tsc™ 3 TA N 6x10™ vy B1oou|— 100pc [s]

e

- tesc/tcool~ 107 (B100uG)3 (1100pc)21-‘I
where ( = Ug/U;

B If field is very turbulent ({ ~ 1), electrons
“pile-up” as it never escape from the region.

® different spectra in spine/layer.

B observed hump in X-rays?

Ostrowski 00, Stawarz & Ostrowski 02



Stratified Jet : Radio Observation of 3C353

Swain+ 98
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¥ VLA observation of FR-II radio galaxy 3C353 at 8.4 GHz.

m “Flat topped” total intensity profile.

® The polarization “rails” at the edges of jets.
(result frorn vector cancellation between polarized jet
emission and orthogonally polarized lobe emission?)

B Most of the jet emission comes from a thick outer layer, rather than
the fast spine?



M87 : Jet Launching Site

? Junor+ 99
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¥ VLBI observations of M87:
v' evidence for Jet formation, and collimation at ~ 30-100 R, scales.

B Jet are formed by an accretion disk?

E Another important discovery:
v evidence for “limb-brightening” in jets even at sub-pc scale.



Diffuse X-ray Emission of Cen-A Jet

Diffuse only ' :
JK+ 06, see also Hardcastle 03
B A deep Chandra observation of Centaurus A.

m Nearest AGN (d, = 3.4Mpc, 1" = 18 pc).

® An ideal laboratory for investigating the transverse jet structure.

| D"i.ff:usoe_-i- knot

F 41 jet-knots of 0.5"~4" size were detected and REMOVED. “Holes”
after removing the jet-knots were interpolated by surrounding pixels.

m Finally obtain an X-ray jet image for DIFFUSE emission only.



Diffuse or Unresolved?

JK+ 06

50.0
E Some fraction of extended emission
may be explained by the pile-up of 20.0 |
small scale knots. = |
L\/ 10.0
Need Log-N/Log-S study! %, 5.0
Le)
N(>L) - { L% (L < Ly
2.0
L4 (L > Ly,
- 1 1 “‘\?.
03?5.5 ’ 36.0 36.5 37.0 37.56 8.0 a8.6
L I—X-ray (erg/S)
Lo = J'L N(>L)dL ----- L., <8.1x10%erg/s
m Vvs. X-ray Jet total : L. =1.6x10¥%erg/s

v “Really diffuse” emission accounts for ~50% of total luminosity.

v Unresolved small scale knots should be < 20 %.



Transverse Profile of X-ray Jet
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B Clear detection of “double-horn” structure in the transverse direction.

B Spectral index is almost uniform across/along the jet, a,~ 1.
» already modified by sync loss, while cooling time is very short;

tyn~ 20 B, B oeYT] Need for cont. accel. over jet volume!

B Hints of extremely hard spectra at very edges of the jet?



Stratified X-ray Jet in Cen A7
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B IF limb-brightening of the diffuse X-ray emission is
(1) due to the varying Doppler enhancements, and
(2) emissivity is uniform along the jet, we obtain

...~ 1/sina ~ 1.3, where a ~ 50deg is the jet viewing angle.

layer
E To reproduce the observed “double-horn” structure, >3

B Oversimplified assumption, but consistent with stratified jet scenario.

spine



Stratified X-ray Jet in Cen A7
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(1) due to the varying Doppler enhancements, and
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E To reproduce the observed “double-horn” structure, > 3

B Oversimplified assumption, but consistent with stratified jet scenario.
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Stratified X-ray Jet in Cen A7
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B IF limb-brightening of the diffuse X-ray emission is
(1) due to the varying Doppler enhancements, and
(2) emissivity is uniform along the jet, we obtain

...~ 1/sina ~ 1.3, where a ~ 50deg is the jet viewing angle.
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E To reproduce the observed “double-horn” structure, > 3

B Oversimplified assumption, but consistent with stratified jet scenario.
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Jet Content (1)

Hardcastle & Worrall 00
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B In both hotspots & lobes, we expect u_~ ug. Even for jet-knots,
u,>> ug is NOT required, as long as giving up IC/CMB scenario.

B This is, however, NOT exclusively to leptonic jet!

F Indeed. studies of pressure balance within the lobes suggest
P >P meaning significant contribution of hidden protons.

thermal non-th?’



Jet Content (2)
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F IF jets are moving with relativistic speed at kpc-Mpc scale
(M5~ 10) “bulk-Comp” of CMB photons is expected just in IR band.

v NOT observed for PKS0637-752 ...
v Beamed IC/CMB invalid? pure ee*jet unfavorable?

(see the discussion in Sikora & Madejski 00 for Blazars)



Summary

B Recent observations confirm that almost all jet structures
(jet-knots, hotspots, lobes) are strong “X-ray emitters”.

B Lobes and hotspots well support an assumption of u_~ ug, whereas

“too bright” X-ray jets challenge a conventional, one-zone IC/CMB.
Indeed, various evidence for “non-standard” spectra and “stratified
jets” are being obtained very recently.

B These observations more strongly favor Sync origin of X-ray

emission, and these may be related with an “exotic” particle
acceleration in jet boundary shear layer.



