Broad-Band Observations of Large Scale Jets in AGNs

Jun KATAOKA (Tokyo Inst. of Tech.)

Outline

Brief introduction

✓ Sub-pc to Mpc connection (from "blazars" to "Rad Gal")

Multiband study of large-scale jets.

- \checkmark Comparative study of knots, hotsopts, and lobes
- ✓ Merits/demerits of beamed IC/CMB
- Toward nature of "bright" X-ray jets
 - \checkmark Non-standard Sync emission and acceleration
 - ✓ Observation of jet structures
 - ✓ Jet contents

AGN Jet: introduction

low power (FRI, BL Lac)

Viewing angle is a key to identify various classes in AGNs.

- Blazars' emission come from the most inner part of the jet, via the internal-shock in sub-pc jet.
- Large scale jets in powerful radio galaxies (FR II/QSO) extend to Mpc scale: internal and/or external-shock ?

AGN Jet: introduction

Viewing angle is a key to identify various classes in AGNs.

- Blazars' emission come from the most inner part of the jet, via the internal-shock in sub-pc jet.
- Large scale jets in powerful radio galaxies (FR II/QSO) extend to Mpc scale: internal and/or external-shock ?

AGN Jet: introduction

- Viewing angle is a key to identify various classes in AGNs.
- Blazars' emission come from the most inner part of the jet, via the internal-shock in sub-pc jet.
- Large scale jets in powerful radio galaxies (FR II/QSO) extend to Mpc scale: internal and/or external-shock ?

"Well-defined" double peaks over two decades in freq.

u_e and u_B can be determined uniquely, by comparing LE/HE
 Direct measurement via superluminal motion Γ_{jet} > (β²_{app} +1)^{1/2}
 Rapid time variability as short as 1 day: R ~ ct_{var} δ
 B ~ 0.1 G, R ~ 0.01 pc, Γ_{iet} ~ 10, u_e ~ 10 u_B

Radio Gal. (kpc~Mpc jet)

- Smooth Sync between radio and optical.
 - Parameters degenerate as $L_{sync} \propto u_{e} u_{B} V$.
- Proper motions are often difficult to observe.
 - Jet/c-jet provides only weak constraint (e.g., $\Gamma_{iet} \sim 2$ for M87).
- Lack of variability prevent us imagine size of distant sources.
 - Physics of kpc/Mpc jets are much more unclear!

Why large scale jets important?

Jet model : Begelman & Cioffi 89

Only ~ 1% of kinetic energy would be converted into radiation in sub-pc jet, as also implied from an internal shock scenario.

An ideal laboratory for jet interaction, heating, and large-scale structure formation of hotspots and lobes.

Recent X-ray observations adds NEW clues to jet physics!

Chandra : Wilson+ 00

X-ray jets: Data Sample

Marshall+ 02; Comastri+ 03 ... and many !

- 44 radio galaxies detected with Chandra/XMM by Dec.2004. (see http://hea-www.harvard.edu/XJET/index.cgi by D.Harris for most recent information. # of detected source reached to 75 as of June 2006!)
- 56 jet-knots, 24 hotspots, 18 radio lobes (ASCA+SAX).
- 13 FR-I, 13 FR-II, 14 QSOs, 4 blazars.
- Nearest: Cen A (z = 0.00183), Farthest: GB1508 (z = 4.3)

Radio-to-X-ray Comparison

Radio-to-X-ray Comparison

Radio-to-X-ray Comparison

"beamed "IC/CMB" or SSC? e.g., Tavecchio+ 00, Celotti+01

Radio-to-X-ray Comparison

"Beamed" IC/CMB : Method

- Only jet-knots are bright in X-rays, in the sense L_{1keV}/L_{5GHz} > 1.
- Calculate "expected" X-ray fluxes for IC/CMB (or SSC for hotspots) production of X-rays in a homogenous region, under u_e = u_B.

We expect that...

Too bright X-ray jet-knots could be explained by considering an appropriate beaming factor as $L_{IC/CMB} \propto \delta^3$ or $L_{SSC} \propto \delta^{-5/2}$.

Beamed IC/CMB : Results

- Distribution of B_{eq} that can reproduce the radio/X-ray luminosities.
 B-field is significantly enhanced in the hotspot?
- For the hotspots and radio lobe, $\delta \sim 1$ is expected, as expected from the "terminal point" of the jet. (assumption of $u_e = u_B$ is valid.)

 δ ~ 10 required for most of the jet-knots.
 Maybe jets are relativistic even on kpc-Mpc scales? also see, Sambruna+04

Beamed IC/CMB : Results

- Distribution of B_{eq} that can reproduce the radio/X-ray luminosities.
 B-field is significantly enhanced in the hotspot?
- For the hotspots and radio lobe, $\delta \sim 1$ is expected, as expected from the "terminal point" of the jet. (assumption of $u_e = u_B$ is valid.)

 δ ~ 10 required for most of the jet-knots.
 Maybe jets are relativistic even on kpc-Mpc scales? also see, Sambruna+04

Beamed IC/CMB : Results

- Distribution of B_{eq} that can reproduce the radio/X-ray luminosities.
 B-field is significantly enhanced in the hotspot?
- For the hotspots and radio lobe, δ ~ 1 is expected, as expected from the "terminal point" of the jet. (assumption of u_e = u_B is valid.)

 δ ~ 10 required for most of the jet-knots.
 Maybe jets are relativistic even on kpc-Mpc scales? also see, Sambruna+04

Warning Signal (1): beaming?

- Not only powerful QSOs (e.g., PKS0637, 3C273), but also several FR-II jets are "bright" in X-rays (Pictor A; Wilson+ 01, 3C303; JK+ 03 etc ...).
- The X-ray enhancement due to relativistic beaming is hardly expected, as viewing angles of FR II are generally large!
- If we give up "u_e ~ u_B" assumption, the magnetic field must be as small as B ~ 0.01 B_{eq}, meaning that u_e ~ 10⁸ u_B for extreme cases!.

Warning Signal (2): z-dependence?

Warning Signal (3): offset?

- Many jet sources show "offsets" between radio and X-ray peaks, in most cases, X-ray peak intensities "precede" the radio.
 - Reality of one-zone model? (different jet structure?)
 - X-rays emission process other than IC/CMB?

Warning Signal (4): jet speed?

From the optical/radio measurements of jet/c-jet ratios in sub-pc/kpc scale jet, most probable values for the jet speed and inclination are:

$$\beta = 0.90 - 0.99, \theta \sim 20 \text{ deg} \rightarrow \Gamma_{\text{iet}} \leq 5, \delta \sim a \text{ few}$$

Even powerful QSO jets may NOT so fast on kpc-Mpc scales!

Stratified Jet? : IC/CMB Model

 $\Gamma_{\text{spine}} \sim 50-100 ! \text{ (see, Jester+ 06)}$

3C120: "Non-standard" Sync ?

Harris+ 04 10^{-24} -30.0 10-25 nev k25 10^{-2} (cgs)25.0 10-2 Density 10-28 5:21:20.0 10-29 Flux 10^{-30} 10-31 10-32 1010 1011 1012 1013 1014 1015 1018 1017 1018

10°

Frequency (Hz)

Convex X-ray spectrum for k25.

15.0

10.0

Difficult to explain either by conventional Sync or IC/CMB model! (Harris, Mossman, Walker 04)

3C120: "Non-standard" Sync ?

Harris+ 04

- Convex X-ray spectrum for k25.
- Difficult to explain either by conventional Sync or IC/CMB model! (Harris, Mossman, Walker 04)

"New" Evidence for "Sync X-ray Jet"

- IR imaging of the jet of 3C 273 by SPITZER clearly confirms that the optical jet emission is dominated by the 2nd, high E component.
- Both the radio and optical components are linearly polarized to a similar degree of ~ 15%, most likely Sync in origin.
- Due to a smooth connection between optical and X-rays, X-ray jet is possibly Sync in nature (leptonic? hardronic? still under debate!)

Sync X-ray bump in KN regime?

Assuming electrons lose energy predominantly due to IC radiation.

- IC cross section reduces significantly in the KN regime compared to a canonical $d\gamma/dt \propto \gamma^{-2}$ relation.
- Very high energy electrons, $\gamma_{KN} < \gamma < \gamma_{max}$, do not cool effectively, that may result in a "characteristic bump" observed in X-rays.

Turbulent Acceleration?

 γ_{max}

 $N(\gamma)$

- Again, stratified jet! "spine" + "layer".
- Accel. process in layer is quite different.

$$\begin{split} t_{acc} &\sim \frac{3\lambda_{e}}{c} \left[\frac{c}{V_{A}} \right]^{2} \sim 5 \times 10^{9} \gamma_{8} B^{\text{-1}}_{100\mu} V^{\text{-2}}_{\text{A},8} \text{ [s]} \\ t_{esc} &\sim 3 \left[\frac{L}{V_{A}} \right]^{2} \frac{c}{\lambda_{e}} \sim 6 \times 10^{15} \gamma_{8}^{\text{-1}} B_{100\mu} L^{2}_{100pc} \text{ [s]} \end{split}$$

 $t_{esc}/t_{cool} \sim 10^7 \ (B_{100\mu G})^3 \ (l_{100pc})^2 \ \zeta^{-1}$ where $\zeta = U_B/U_T$

- If field is very turbulent (ζ ~ 1), electrons "pile-up" as it never escape from the region.
 - different spectra in spine/layer.
 - observed hump in X-rays?

Ostrowski 00, Stawarz & Ostrowski 02

Stratified Jet : Radio Observation of 3C353

- VLA observation of FR-II radio galaxy 3C353 at 8.4 GHz.
 - "Flat topped" total intensity profile.
 - The polarization "rails" at the edges of jets. (result from vector cancellation between polarized jet emission and orthogonally polarized lobe emission?)

Most of the jet emission comes from a thick outer layer, rather than the fast spine?

M87 : Jet Launching Site

- VLBI observations of M87:
- \checkmark evidence for Jet formation, and collimation at ~ 30-100 R_g scales.
 - Jet are formed by an accretion disk?
- Another important discovery:
- ✓ evidence for "limb-brightening" in jets even at sub-pc scale.

Diffuse X-ray Emission of Cen-A Jet

JK+ 06, see also Hardcastle 03

- A deep Chandra observation of Centaurus A.
 - Nearest AGN ($d_L = 3.4$ Mpc, 1" = 18 pc).
 - An ideal laboratory for investigating the transverse jet structure.
- 41 jet-knots of 0.5"~4" size were detected and REMOVED. "Holes" after removing the jet-knots were interpolated by surrounding pixels.
 Finally obtain an X-ray jet image for DIFFUSE emission only.

Diffuse or Unresolved?

Some fraction of extended emission may be explained by the pile-up of small scale knots.

50.0

20.0

✓ "Really diffuse" emission accounts for ~50% of total luminosity.
✓ Unresolved small scale knots should be < 20 %.

JK+ 06

-0.5

Transverse Profile of X-ray Jet

Clear detection of "double-horn" structure in the transverse direction.

Spectral index is almost uniform across/along the jet, $\alpha_x \sim 1$. already modified by sync loss, while cooling time is very short;

t_{syn} ~ 20 B^{-3/2}_{100μ}E^{-1/2}_{10ke}[yr] ➡ Need for cont. accel. over jet volume! ■ Hints of extremely hard spectra at very edges of the jet?

Stratified X-ray Jet in Cen A?

IF limb-brightening of the diffuse X-ray emission is
 (1) due to the varying Doppler enhancements, and
 (2) emissivity is uniform along the jet, we obtain

 $\Gamma_{\text{laver}} \sim 1/\sin \alpha \sim 1.3$, where $\alpha \sim 50 \text{deg}$ is the jet viewing angle.

To reproduce the observed "double-horn" structure,

Oversimplified assumption, but consistent with stratified jet scenario.

Stratified X-ray Jet in Cen A?

IF limb-brightening of the diffuse X-ray emission is
 (1) due to the varying Doppler enhancements, and
 (2) emissivity is uniform along the jet, we obtain

 $\Gamma_{\text{laver}} \sim 1/\sin \alpha \sim 1.3$, where $\alpha \sim 50 \text{ deg}$ is the jet viewing angle.

To reproduce the observed "double-horn" structure,

Oversimplified assumption, but consistent with stratified jet scenario.

Stratified X-ray Jet in Cen A?

IF limb-brightening of the diffuse X-ray emission is
 (1) due to the varying Doppler enhancements, and
 (2) emissivity is uniform along the jet, we obtain

 $\Gamma_{\text{laver}} \sim 1/\sin \alpha \sim 1.3$, where $\alpha \sim 50 \text{deg}$ is the jet viewing angle.

To reproduce the observed "double-horn" structure,

Oversimplified assumption, but consistent with stratified jet scenario.

Jet Content (1)

Hardcastle & Worrall 00

In both hotspots & lobes, we expect u_e ~ u_B. Even for jet-knots, u_e >> u_B is NOT required, as long as giving up IC/CMB scenario.
 This is, however, NOT exclusively to leptonic jet!

Indeed. studies of pressure balance within the lobes suggest
P_{thermal} > P_{non-th}, meaning significant contribution of hidden protons.

Jet Content (2)

IF jets are moving with relativistic speed at kpc-Mpc scale (Γ_{BLK} ~ 10) "bulk-Comp" of CMB photons is expected just in IR band.

✓ NOT observed for PKS0637-752 ...

✓ Beamed IC/CMB invalid? pure e⁻e⁺ jet unfavorable?

(see the discussion in Sikora & Madejski 00 for Blazars)

Summary

Recent observations confirm that almost all jet structures (jet-knots, hotspots, lobes) are strong "X-ray emitters".

- Lobes and hotspots well support an assumption of u_e ~ u_B, whereas "too bright" X-ray jets challenge a conventional, one-zone IC/CMB. Indeed, various evidence for "non-standard" spectra and "stratified jets" are being obtained very recently.
- These observations more strongly favor Sync origin of X-ray emission, and these may be related with an "exotic" particle acceleration in jet boundary shear layer.