CIRCULAR POLARISATION IN AGN JETS

JEAN-PIERRE MACQUART CALTECH (NRAO JANSKY FELLOW)

WHY BOTHER?

- Linear polarisation in AGN long associated with synchrotron emission
 - Degree: magnetic field disorder
 - Position angle: magnetic field direction on the sky
 - Faraday rotation: measure $\mathrm{RM} \propto \oint n_e \mathbf{B} \cdot d\mathbf{l}$
- V is the only Stokes parameter whose origin we do not understand (certainly at radio wavelengths)
 - Composition of the jet?
 - Reflection of underlying B polarity?

OBSERVATIONS

OBSERVATIONAL OVERVIEW

- Typically 0.01-1%
- Often highly variable
 - Large fractional changes relative to I
 - V often poorly correlated with I

$$\left(\frac{\langle \delta V^2 \rangle^{1/2}}{\langle V \rangle} \gg \frac{\langle \delta P^2 \rangle^{1/2}}{\langle P \rangle} \gg \frac{\langle \delta I^2 \rangle^{1/2}}{\langle I \rangle}\right)$$

- Flat/inverted spectrum sources show more CP
- CP usually has preferred handedness between outbursts
- CP usually strongest after an outburst and before the LP is strong

Rayner, Norris & Sault 2000

SGR A*

V varies but no sign change

Historical VLA data shows sign is stable over 20 years at 5 GHz

<V/l> = -0.3% at 5 GHz

25% change in I over 2 hrs but V can go from -10 to -20 mJy

At v>8GHz V flares when I flares

V detected in M81* has similar properties to Sgr A* (Brunthaler, Bower, Falcke 2006)

Bower et al. 2001

<u>Sgr A* RM</u>

- V varies but no sign change
- Historical VLA data shows sign is stable over 20 years at 5 GHz
- <V/l> = -0.3% at 5 GHz
- 25% change in I over 2 hrs but V can go from -10 to -20 mJy
- At v>8GHz V flares when I flares
- V detected in M81* has similar properties to Sgr A* (Brunthaler, Bower, Falcke 2006)

Bower et al. 2001

SGR A*

new BIMA LP detection at 83 GHz

V varies but no sign change

Historical VLA data shows sign is stable over 20 years at 5 GHz

<V/l> = -0.3% at 5 GHz

25% change in I over 2 hrs but V can go from -10 to -20 mJy

At v>8GHz V flares when I flares

V detected in M81* has similar properties to Sgr A* (Brunthaler, Bower, Falcke 2006)

VLBI-SCALE CP (HOMAN & WARDLE)

- few % CP on mas scales
- CP near core/jet base
- Frequency dependence steeper than v⁻¹, argued in terms of polarization conversion in a relativistic plasma
- sometimes see a sign change in V as outburst evolves

FIG. 4.» Naturally weighted images of 3C 84 (1996 September). (a) Total intensity J $\frac{1}{2}$ contours beginning at 0.020 Jy beam~1. The map peak is 3.79 Jy beam~1. (b) Circular polarization intensity map produced with the Zero-V self-cal technique, with J $\frac{1}{2}$ contours beginning at 4 mJy beam~1. The map peak is 3.79 Jy beam~1. The map peak is 3.79 Jy beam~1. (b) Circular polarization intensity map produced with the Zero-V self-cal technique, with J $\frac{1}{2}$ contours beginning at 4 mJy beam~1. The map peak is 3.79 Jy beam~1. The map peak is 3.79 Jy beam~1.

PKS 1519-273

- V & I lightcurves strikingly similar
- 4% CP in scintillating component at 5 GHz
- Proof of scintillation: annual cycle in I & V (Jauncey et al. 2002)
- VSOP upper limit on size of scattering disk (@1.4GHz) and timescale of I flucts gives

 $\theta_{\rm src} < 35 \mu {\rm as}$ and $T_B > 5 \times 10^{13} \, K$

PKS 1519-273

V & I lightcurves strikingly similar

-5×10⁻⁵

-0.01

(Jy) ⊳

Stokes

-0.015

0.02

Best Fit

1.3

- 4% CP in scintillating component at 5 GHz
- Proof of scintillation: annual cycle in I & V (Jauncey et al. 2002)
- VSOP upper limit on size of scattering disk (@1.4GHz) and timescale of I flucts gives

 $\theta_{\rm src} < 35 \mu {\rm as}$ and $T_B > 5 \times 10^{13} \, K$

1519-273: RICH STRUCTURE Johnston et al. (unpublished)

with intermittent presence of V component with opposite handedness

BRIGHTNESS TEMPERATURE CONNECTION

- Several other IDVs show comparably strong CP variations (e.g. PKS 0405-385)
- Tendency for core active, bright sources to show CP?
- T_B estimate complicated by distance to ISM screen responsible for the variations
- $T_B \propto D^2$
 - Varies between sources (fast variations in one source might imply a lower T_B than slow variations in another)

GALACTIC JET SOURCES

- 3 sources detected with CP
- Not all sources show CP (orientation?)
- SS433, GRS 1915+105 (Fender et al. 2000,2002)
- ► GRO J1655-40 (Macquart et al. 2002)
 - CP undergoes sign flip during outburst
 - CP up to 3% (from comparison of I & V changes)
- Similar properties to AGN CP

GRS 1915

THEORIES

SYNCHROTRON Emission

 $m_c \approx \gamma^{-1} \left(m_c \sim \sqrt{\frac{2.8B_{\text{Gauss}} \sin \epsilon}{\nu_{\text{MHz}}}} \cot \epsilon}
ight)$ Legg & Westfold 1968 $m_c = -1.6\Lambda \sqrt{\frac{\nu_{B\perp}}{\nu}} \left(\frac{B_u}{B_\perp}
ight) \sin \epsilon,$

 $\epsilon = {\rm angle \ between \ jet \ normal \ and \ line \ of \ sight}$ – Reduced by magnetic field inhomogeneities

- Depolarisation factor A depends on field geometry
- Sign flip as source becomes optically thick
- Unlikely except for Galactic jet sources (possible large B in emission region)

CYCLOTRON EMISSION

- Y-1<<1, T_B < 5 x 10⁹K: easily diluted by synchrotron emission
- Coherent emission mechanisms:
 - Pulsars emission is coherent and exhibits high CP
 - Could be a magnetospheric propagation effect
 - Electron cyclotron maser emission proposed to explain IDV brightness temperatures (Begelman, Ergun & Rees 2005)
 - naturally gives high CP (e.g. Jovian decametric radiation), but strongly diluted if emission comes from multiple patches and B is inhomogeneous (as expected).

STEEP (aka Monoenergetic) e⁻ DISTRIBUTION? • Propose a steep e⁻ distribution Kirk & Tsang 2006

- More low energy photons can escape without absorption by low-energy e⁻: T_B = 1.2×10¹⁴ ζ^{6/5}(1+z)^{-6/5} (^D/₁₀)^{6/5} (^ν/_{1 GHz})^{-1/3} (^{νmax}/_{10⁵ GHz})^{2/15} (^{1-e^{-τs}}/_{τ^{1/5}}) K
 Predicts few % CP: m_c = 0.019 ζ^{-1/5} τ^{1/5}/_s (1+z)^{1/5} (^D/₁₀)^{-1/5} (^{νmax}/_{10⁵ GHz})^{1/5} cot θ
- Prediction: I_v ~ v^{1/3} up to IR energies and IC component in the MeV to GeV range

SCINTILLATION-INDUCED CP

Unlikely since it predicts sign changes (<V>=0)

Macquart & Melrose 2000a,b (Phys. Rev. E & ApJ)

GENERAL-RELATIVISTIC PLASMA PROPAGATION EFFECTS

- Effects associated with a plasma in a curved spacetime
 - plasma frequency acts like a mass term
 - "mass" depends on position through the plasma density
 - photons no longer follow null geodesics
 - geodesics different for ordinary and extraordinary modes
 - Photons from one mode can be captured by BH while the other escapes

 $\omega \sim \omega_P, \omega_B$

- Probably not viable for AGN since fraction of emission coming from near BH is small
- Requires emission at

Broderick & Blandford 2003,4

Optically think Shakura-Sunyaev accretion disk near a Schwarzschild BH

POLARISATION CONVERSION IN A RELATIVISTIC PLASMA (I)

Sazonov 1969; Pacholczyk 1973; Jones & O'Dell 1977

- Converts LP to CP
- Conversion only on Stokes U, so need field line reorientation or Faraday rotation
- Strongest near τ~1
- Sign flip possible as optical depth increases
 - Blandford-Königl jet: self-similarity can give CP of consistent sign and magnitude with v
- Beckert & Falcke 2002, Ruszkowski & Begelman 2002 conversion in a stochastic magnetic field with weak to keep persistent handedness of V.
- Mean LP and CP depend on number of field reversals
- High Faraday rotativity without depolarisation

V (right-hand) ${
m RRM} = 3 imes 10^4 \, L \langle n_r \gamma_1 B^2 \sin^2 heta
angle \, {
m rad} \, {
m m}^{-3}$ Q V (left-hand)

Kennett & Melrose 1998

CIRCULAR REPOLARISATION e⁻/e⁺ JETS?

- VLBA detection of CP in 3C 279 (Wardle et al. 1998)
 - 1% CP found near core/jet base LP~10%
 - Argued for a propagation effect in a relativistic plasma from ν dependence
 - Must have γ_{min} ~100 for e⁻/p jet to avoid Faraday depolarisation and large jet kinetic power
 - Detailed polarisation modelling: optically thin synchrotron with a bias in B, and only a few field reversals $\Rightarrow \gamma_{min} < 20$. Hence need pair plasma.
- Both Ruszkowski & Begelman and Beckert & Falcke dispute the claim of an e⁻/e⁺ jet based on CP
 - Models with large numbers of field reversals along line of sight
 - Different γ_{min}, n_{cold}/n_{relativistic}, n₋-n₊ and bias (level of B relative to fluctuations) can lead to same rotativity and convertability

CONCLUSIONS

- Associated with active cores (in AGNs and XRBs)
 - High CP during ejections
 - Highly variable
 - High CP on mas and µas scales
- Mechanisms
 - Polarisation conversion in relativistic plasma most favoured
 - Sign stability \Rightarrow B polarity stable?
 - Others: synchrotron, scintillation-induced, GR effects, coherent emission

"The most significant result of the project is that we now know less about circular polarisation than we thought we did when we started."

- Ray Norris, on the completion of Dave Rayner's thesis to measure circular polarization in blazars to 0.01% using ATCA

THE ROTATION MEASURE OF SGR A*

21 cm variations (in 8x20MHz sub-bands)

(Quenched) Diffractive Scintillation at 1.4 GHz

Macquart & de Bruyn, A&A 2006

(i) caused by interference between sub-images on the scattering disk (intensity fluctuations are strongly frequency-dependent).

- (ii) occurs in strong scattering (and thus at long wavelength)
- (iii) requires a component of the source to be compact
- (iv) ii & iii require source to possess a high brightness temperature

25 Jan 2004

30 Jan 2005

Wideband (frequency-mosaiced) WSRT observations

Source implications

medium anisotropy at 6cm into account. More complicated estimate without assuming a screen distance: use decorrelation bandwidth and time scale of fast variations to find *z* (as a function of flux density associated with compact component, Sdiff):

$$T_b = 2 \times 10^{14} \,\mathrm{K} \qquad S_{\mathrm{diff}} = 150 \mathrm{mJy}$$
$$T_b = 1 \times 10^{15} \,\mathrm{K} \qquad S_{\mathrm{diff}} = 50 \mathrm{mJy}$$

Caveat: scintillation models do not take into account anisotropy in source or turbulence. But none indicated by 21cm annual cycle in diffractive time scale so far.