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Collisionless shock wave front structure
Test particle approach
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First-order Fermi process
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First-order Fermi process
Nonrelativistic shocks
(test particle approach, superthermal particles)
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* particle spectrum independent of conditions near the shock
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First-order Fermi process
Relativistic shocks
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* acceleration process is very sensitive to the background conditions
and details of particle-wave interactions, which are poorly known



Numerical modeling of the turbulent magnetic field

* pitch-angle diffusion model
A0, At scattering parameters

scatt

* “‘realistic’” magnetic field — integration of particle equations of motion

Studies of the I-order Fermi process — M. Ostrowski’s talk —
apply simplified models for the turbulent MHD medium near the shock.

In particular they neglect:

* presence of long wave perturbations (mean field)
* continuity of magnetic field across the shock —
correlations in particle motion on both sides of the shock.



“"Realistic’” magnetic field structure

Niemiec & Ostrowski (2004, 2006) & Pohl (2006)

Upstream magnetic field:

- B= EO +0B uniform component + finite-amplitude
perturbations (superposition of sinusoidal
static waves — no Fermi II acceleration)

* perturbations in the wide wavevector range
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* downstream structure: compressed upstream field
——> continuity of magnetic field lines across the shock



“"Realistic’” magnetic field structure
Niemiec & Ostrowski (2004, 2006) & Pohl (2006)

* integrate particle equations of motion in the turbulent magnetic field
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Subluminal shocks Niemiec & Ostrowski (2004)
mildly relativistic shock velocity (y,=1.2, u,,=0.71c)
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* non power-law spectrum 1in the full energy range
(due to limited dynamic range of magnetic field perturbations — scattering
conditions vary with particle energy)

* cut-offs due to lack of magnetic turbulence at relevant scales
k., ~2m/ rg(E)



Superluminal shocks
mildly relativistic shock velocity (y,=2.3, u,,=1.27¢)
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* ““superadiabatic”” compression of injected particles for small turbulence

amplitude 0B/B,=0.3 (Begelman & Kirk, 1990)
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Superluminal shocks
mildly relativistic shock velocity (y,=2.3, u,,=1.27¢)
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* ““superadiabatic”” compression of injected particles for small turbulence

amplitude 0B/B,=0.3 (Begelman & Kirk, 1990)

* power-law sections in the spectra form at larger perturbation amplitudes
(due to locally subluminal field configurations and respective magnetic
field compressions formed at the shock by long-wave perturbations)

* steepening and cut-off occur in the resonance energy range



Bednarz & Ostrowski (1998) Ultrarelativistic (high-y) shocks
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* almost always superluminal conditions
- asymptotic spectral index (y, » 1)
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Shock Lorentz factor
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Superluminal high-y shock waves Niemiec & Ostrowski (2006)
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* ““superadiabatic”” particle compression 1s the main acceleration process

* small fraction of particles forms energetic spectral tails for large-amplitude
magnetic field perturbations
strong dependence on F(k)
non—power-law spectral form

* cut-offs in the spectra occur within resonance energy range



For all configurations u, ~1.4c
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» the cut-off energy decreases with growing shock Lorentz factor y,



Particle transport near a ultrarelativistic shock wave

* downstream magnetic field structure

B,=5,

B gy = F B ~; compression of tangential field components

compression factor: 7 = R y]/ Y, ﬂ(R ~3)

highly anisotropic downstrean particle diffusion:
diffusion coefficient along shock normal K|| « K 7

Downstream magnetic field structure becomes effectively 2D, perpendicular to the
shock normal. Due to inefficient cross-field diffusion, advection of particles with
the general downstream flow leads to high particle escape rates, which results in
steep particle spectra.

* large-amplitude long-wave perturbations can form locally subluminal conditions

at the shock leading to the more efficient particle acceleration (Kolmogorov
turbulence)



Parallel high-y shock waves
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* processes of particle acceleration are inefficient for larger amplitudes of magnetic
field perturbations:
compression produces effectively perpendicular shock configuration
and features analogous to those observed in superluminal shocks are recovered

* spectral indices depart from a = 4.2 value



* turbulent conditions near the shock which are consistent with the shock
jump conditions can lead to substantial modifications of the acceleration
picture with respect to the (simplified) models producing wide-range
power-law spectra, often with the ,,uniwersal* spectral index

* ultrarelativistic shocks are inefficient in high-energy particle production
via the first-order Fermi mechanism (unless additional source of turbu-

lence exists and is able to decorrelate particle motion in the structured
field near the shock ?)



Shock generated magnetic field turbulence
PIC 51mulat10ns by Frederlksen et al. 2004
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* relativistic shock generates strong small-scale turbulent magnetic field downstream
by relativistic two-stream instability (Medvedev & Loeb 1999; Silva et al. 2003;
Nishikawa et al. 2003, 2005; Frederiksen et al. 2004) talk by A. Spitkovsky

* short-wave magnetic field structure 1s 2D, transversal to the shock normal, but in
the long-time nonlinear regime the perturbations should transform into isotropic
3D turbulence.

* small-scale large-amplitude fluctuations can possibly provide efficient particle
scattering, which may lead to decorrelation between particle motion and the
compressed field downstream of the shock



Modeling short-wave (Weibel-like) turbulence downstream
Niemiec, Ostrowski & Pohl (2006)

* analytic model for 3D Weibel-like turbulent component downstream

of the shock (superposition of large-amplitude sinusoidal static waves with flat
power spectrum in the wavevector range (/0 k,_r, 100k, r), where r=RY,/Y,)

max

* short-wave turbulence imposed on the compressed downstream field

* hybrid method used: exact particle short-wave component

trajectories in long-wave compressed field
and small-angle scattering (AQ) in
short-wave component
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* how the existence of short-wave turbulence with various amplitudes
affects particle spectra formation 1n high-y shocks presented above?

* what are conditions allowing for a “universal” spectral index?
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* for energy densities in short-wave turbulence much larger than the energy density
in the compressed downstream magnetic field energetic particle spectral tails

are formed
non—power-law spectral form (convex spectra)

similar spectral shape for different 0B/B, |, F(k) (and ;)
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* for energy densities in short-wave turbulence much larger than the energy density
in the compressed downstream magnetic field energetic particle spectral tails

are formed
non—power-law spectral form (convex spectra)

similar spectral shape for different 0B/B , F(k) (and y;)
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* for energy densities in short-wave turbulence much larger than the energy density
in the compressed downstream magnetic field energetic particle spectral tails

are formed
non—power-law spectral form (convex spectra)

similar spectral shape for different 0B/B , F(k) (and y;)

* efficiency of particle scattering (scatt. angle AQ) due to small-scale perturbations
decreases with particle energy: 0B /<B,> must be extremely large to decorrelate

motion of high-energy particles from the compressed field downstream of the shock
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Parallel shocks with
short-wave perturbations
downstream

* for larger amplitudes of the compressed field (0B/B, ;) spectra qualitatively

similar to those formed at superluminal shocks

(large-amplitude long-wave perturbations provide locally superluminal conditions
that lead to spectral cut-offs when particle scattering in short-wave turbulence

decreases with particle energy)

* particle spectral index deviates from the ““universal®‘ value a=4.2 even

in the limit of BBSh/<B2> » 1
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* for smaller amplitudes of the long-wave field, scattering on the short-wave
turbulence can dominate up to the highest energies — wide-energy power-law
spectra

* particle spectra steeper than the expected " universal‘‘ spectrum a=4.2
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* for smaller amplitudes of the long-wave field, scattering on the short-wave
turbulence can dominate up to the highest energies — wide-energy power-law
spectra

* particle spectra steeper than the expected " "universal‘‘ spectrum a=4.2

* (long-wave) magnetic field structure upstream of the shock influences particle

acceleration processes; only in the model with short-wave component both
downstream and upstream, particle spectrum with the " universal‘‘ spectral index
forms



Concluding remarks
* [-order Fermi process at high-y shocks 1s inefficient in particle
acceleration to high energies

3 particle spectra substantially depend on the form of the magnetic turbulence
near the shock; spectral indices depart significantly from a=4.2 value

3 for the same background conditions, shocks with larger y produce steeper
spectra with lower cut-off energies

Q" universal* spectral index requires special conditions (strong particle
scattering downstream and upstream of the shock)

The role of the I-order Fermi process in explaining the observational properties of
astrophysical sources hosting relativistic shocks requires serious reanalysis

* UHECRSs production, hot spots’ and GRB afterglows’ spectra?

3 IT-order Fermi process (Virtanen & Vainio 2005)
3 other acceleration processes (e.g. Hoshino et. al 1992, Hededal et al. 2004)

Further progress requires: Y observational results
O numerical simulations (PIC simulations (magnetic
field turbulence generation & particle injection) —
background conditions for Monte Carlo methods)



