

Gamma-Ray Burst Explorer:

Latest Results

John Nousek (Penn State University)

Relativistic Jets, Krakow, Poland, 25 June 2006

PENN<u>State</u>

MOC Facility

Located in State College, PA

~ 4 km. from Penn State campus

Flight Operations Team (FOT)

responsible for observatoryHealth & Safety

Science Operations Team (SOT)

- responsible for scientific operation of Swift

Has continuously operated Swift successfully from L+80 minutes to now!

Swift Observatory Status

Swift meets or exceeds all Level 1 requirements !

Observatory Science Up-time: 96.7%

Except for rare spacecraft or instrument down-time and SAA passage, Swift collects data continuously

Ground Station Status: Nominal

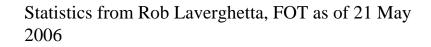
- Malindi 5607 passes since Launch, 99.3% successful
- TDRSS DAS currently providing 99.3% success rate
- USN backup provided 3 successful of 3 requested passes since Apr, 2005

Observatory Status: Nominal

- ACS: executed 41,453 slews, >99% within 3' accuracy
- All systems functioning properly, without any signs of degradation

Observatory Lifetime: Above prediction

Orbital life expected to >2013, no observatory or instrument limits known


Flight Operations Team Response: Excellent

On average, there was an FOT after hours response once every three days

Science Operations Team Response: Excellent

- SOT has prepared schedules for Swift every day without an SOT induced error
- SOT/BA team has responded to every GRB with prompt (typical < 1 hour) data analysis and preparation of GCN circulars, ATELs etc for about 200 events

PENNSTATE

Publications

Publications in first 1.5 years

- □ ~120 papers published in ApJ, A&A, MNRAS
- \Box ~60% with first author not on Swift team
- 13 Letters in Nature & Science
 http://swift.gsfc.nasa.gov/docs/swift/results/publist
 for list of papers and links)
- ~600 Swift GCN Circulars (plus ~800 community GCNs for Swift GRBs)
- □ ~50 ATELs and IAU Circulars
- □ 4 press events

Statistics courtesy of Neil Gehrels – Apr, 2006

Popular Science "Best of What's New in Space Science"

National Aeronautics and Space Administratio

www.nasa.gov

Swift Wins Popular Science Award

NASA Goddard's Swift mission is a recipient of *Popular Science* Magazine's 'Best of What's New' Award for 2005 in the Aviation & Space category. Developed with international collaboration, Swift is a multi-wavelength observatory dedicated to studying gamma-ray bursts.

For more information about Swift, visit: http://swift.gsfc.nasa.gov

Congratulations to the Swift team for a truly outstanding achievement!

Swift Observing Strategy

SOT prioritizes targets by following criteria:

□ GRB automated response, afterglow followup, GRB ToO: 64%

- Visible GRB afterglows receive top priority
- Typically 2-6 afterglows visible each day, but require ~4 targets per orbit

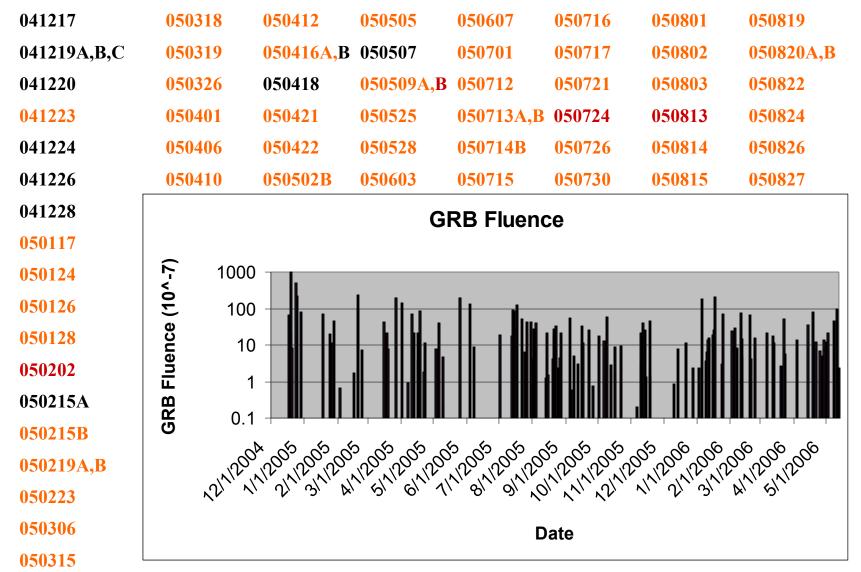
□ Targets of Opportunity (non-GRB ToO): 10%

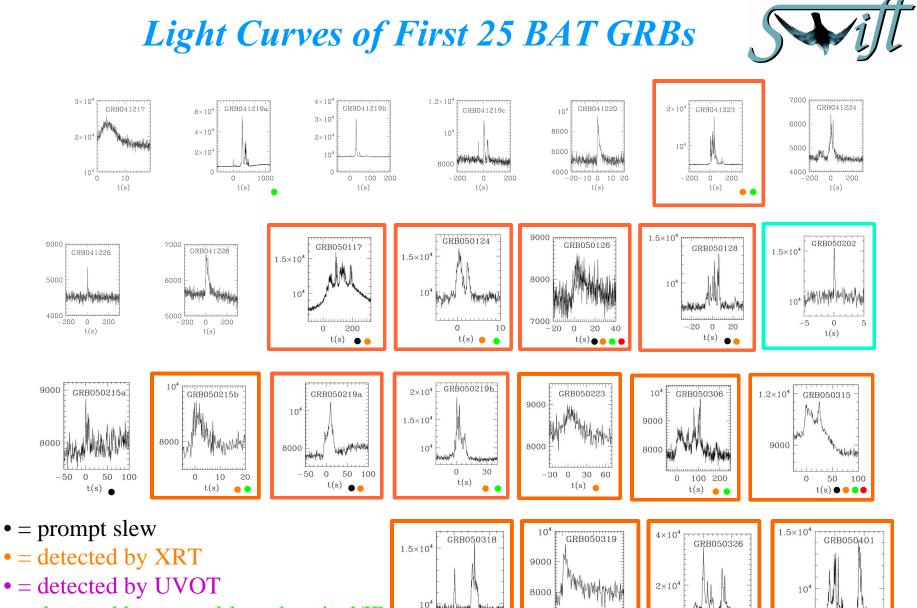
- Currently solicited via public webpage with 5 levels of urgency
- Approved by Neil Gehrels, Swift PI
- Swift AO-3 will allow peer review of ToO proposals

Instrument Calibration: 6%

Proposed by instrument teams as needed

□ Fill-in Targets: 18%


- Selected from lists proposed by Swift team which survived internal peer review
- Only observed when no targets in higher priority levels are available
- Chosen with consideration to maximize sun angle and reduce XRT temperature
- Swift AO-4 will allow peer review of target proposals from general community

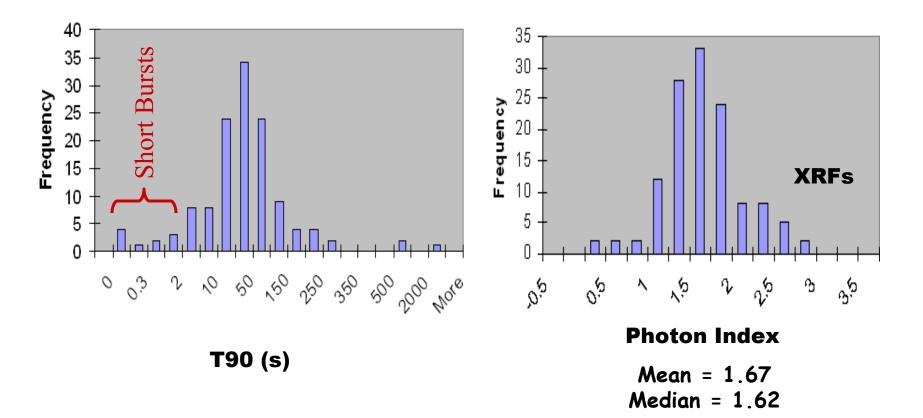


BAT Bursts

• 142 GRBs detected/imaged 17 Dec 04 to 15 May 06 => 102/yr

t(s)

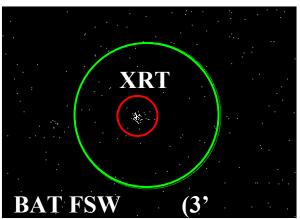
t(s) 🔴


t(s)

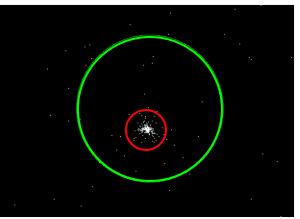
- = detected by ground-based optical/IR
- = redshift measurement

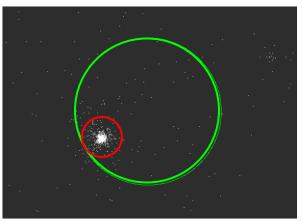
t(s)

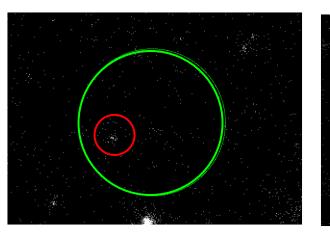
BAT GRB T90 & Photon Indices



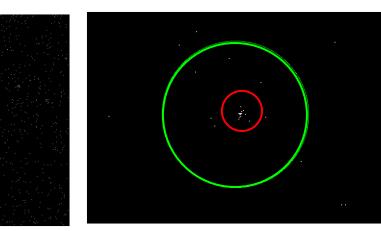
Statistics courtesy of Dave Burrows


BAT GRB Position Accuracy


GRB 050215b


GRB 050315

GRB 050319



GRB 050406

GRB 050416a

GRB 050509a

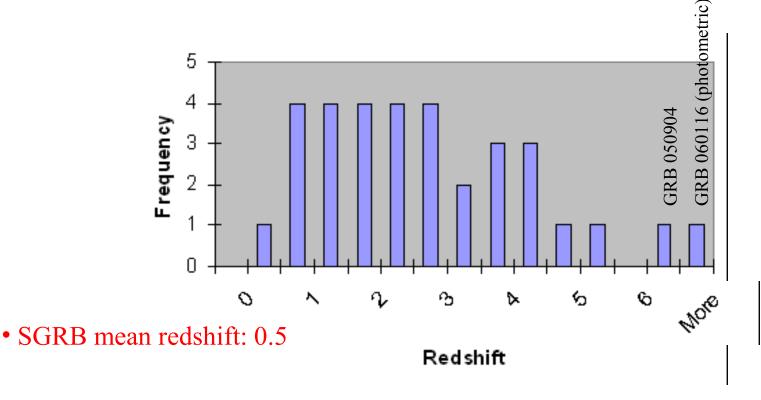
Mean BAT position error: 52 arcseconds

T. Sakamoto

XRT Detections of BAT GRBs

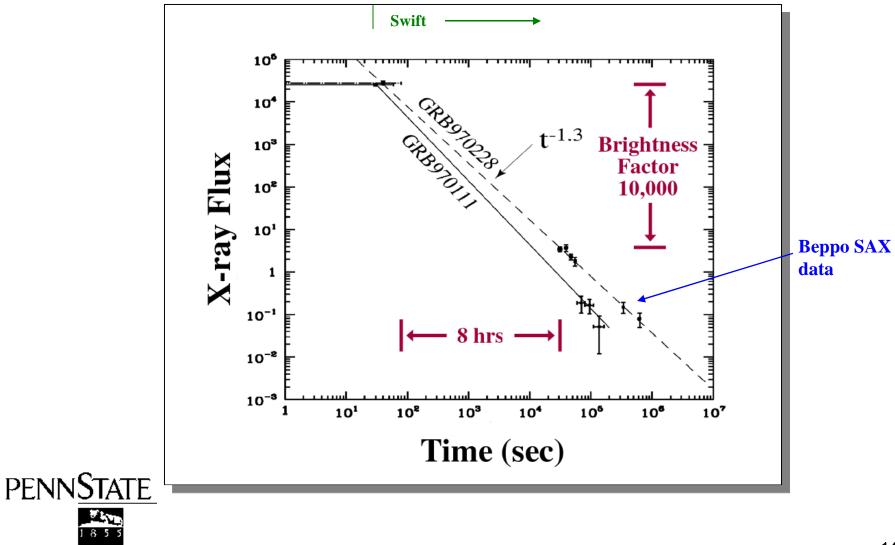
- LGRBs:
 - Detected 109/110 = 99% with XRT (observed @ T < 200 ks)
 - Compare with 55 LGRB afterglows before Swift launch
 - $\sim 80\%$ had prompt slews
 - 95% of prompt XRT observations (< 350 s) yielded detections
 - $\sim 80\%$ have fast decline or flare within first ~ 5 minutes
- SGRBs:
 - Detected 8/12 = 67% with XRT (observed @ T < 200 ks)
 - Compare with 0 SGRB afterglows before Swift launch
 - ~90% had prompt slews (one -051114 was delayed for 1.5d)

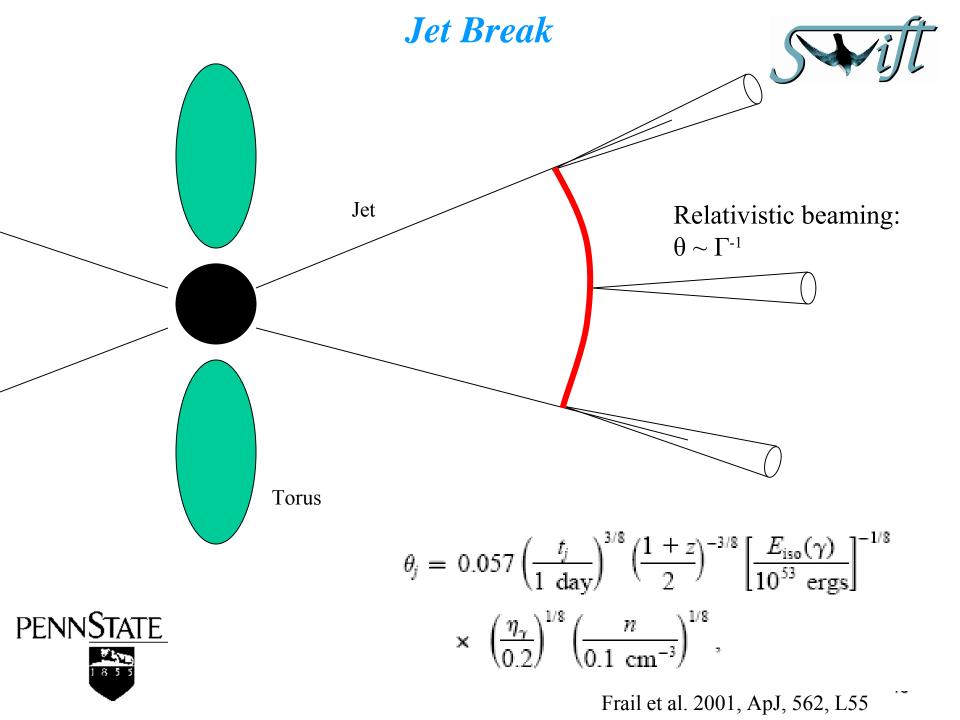
UVOT Detections of BAT GRBs



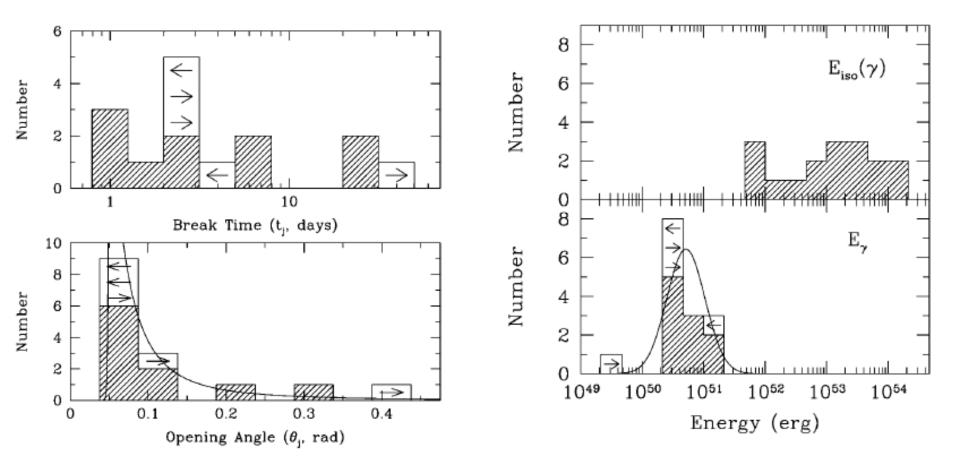
- Detected 34/113 = 30% with UVOT
 - 93 were prompt observations => 37% UVOT detection rate for prompt observations
 - •Recently changed observing sequence to include 'white' •May increase UVOT detection rate to ~45-50%
 - UVOT upper limits are quite faint and very early for most of these
 - However, 70 have ground-based detections (typically R, I, J, or K)
 - Dust extinction? (some evidence supporting this)
 - Magnetic suppression?
 - High z? (certainly in some cases)

Redshifts of BAT GRBs

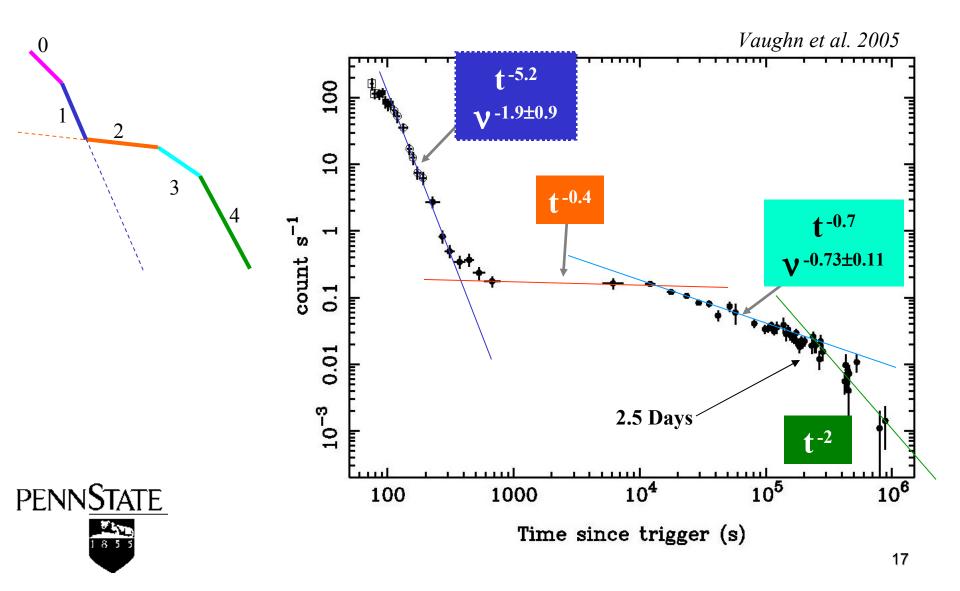



- 35 have redshift measurements:
 - Average redshift for LGRBs: 2.7
 - (compared with about 1 for Beppo-SAX bursts)
 - Highest redshift: 6.29
 - •12 GRBs with z>3.9

Afterglow Evolution – Pre-Swift

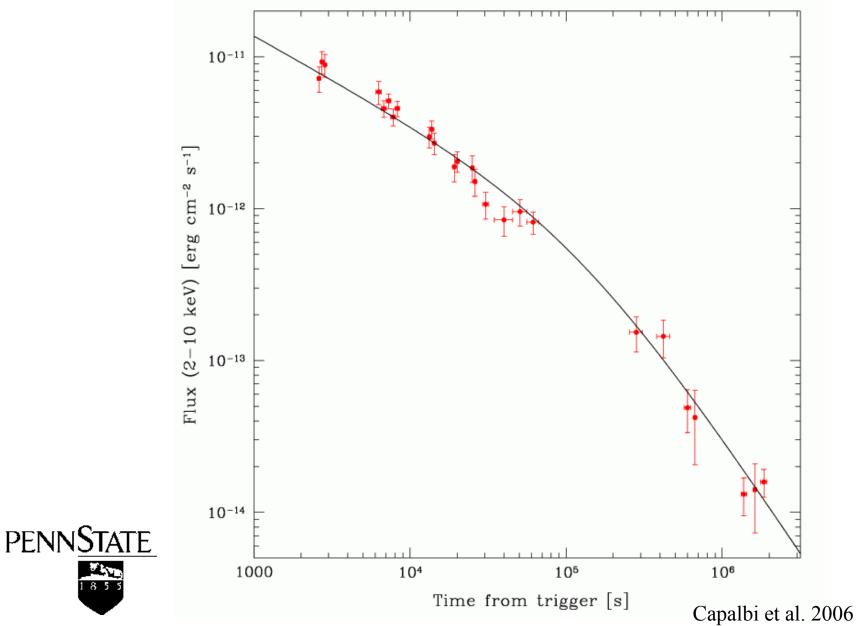


Jet Break

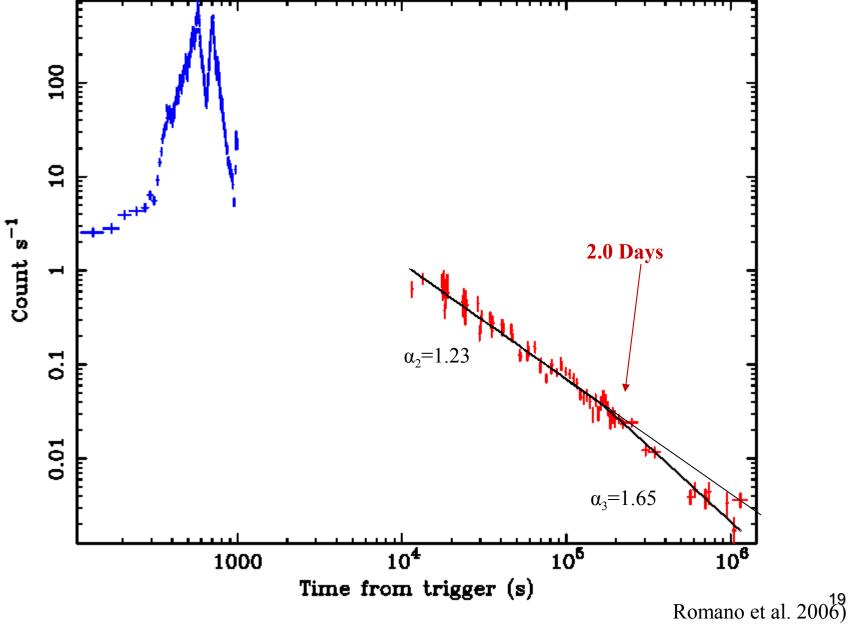


Jet break knowledge is critical for GRB energetics: $E_{\gamma} = E_{iso}(1 - \cos \theta_j)$

¹⁶ Frail et al. 2001, ApJ, 562, L55


Jet Break in GRB 050315

Jet Break in GRB050408



18

Jet Break in GRB060124

Jet Break Implications

Are there two "classes" of jet breaks?

- Cases with measured XRT jet breaks seem to be systematically different from cases without measured breaks. This is an observational fact that now must be addressed.
- Bursts with optical/radio jet breaks seem to be systematically different from those with X-ray observations. We must address chromatic breaks in optical/X-ray (Panaitescu et al. 2006).
- 1. If early X-ray breaks are jet breaks, then
 - 1. p < 2
 - 2. Jet angles very small
- 6. If early X-ray breaks are not jet breaks, then:
 - 1. Collimation is less common than thought previously
 - \Rightarrow Energy in jet is not standard candle
 - 2. If jets are truly collimated with angles of a few degrees, then
 - 1. Efficiency may vary widely (0.1% to 90%?: Zhang et al. 2006; Panaitescu et al. 2006)
 - 2. Density is low: could reconcile these results with measured jet breaks if n~0.001 cm⁻³.
 - 1. Consistent with multi-phase ISM?
 - 2. Consistent with lack of optical and radio afterglows:
 - 1. ~75% of X-ray afterglows are consistent with $v > v_c$.
 - 2. In this case X-ray afterglow is independent of density
 - 3. => low densities could produce very weak AGs in optical and radio.
 - 4. Apparent discrepancy could result from selection bias in optical/radio.
 - 5. BUT: 060206 seems to rule out this explanation

Fill-in Target Progress

- Swift team provided targets in two rounds New round to be solicited by Neil Gehrels
- With Swift AO-4 non-team proposers will be able to request targets Subject to peer review, US proposers eligible to receive NASA funding
- Individual targets not guaranteed Equivalent to ROSAT, ASCA, etc, Type C time

	Round 1	Round 2	Total
Finished (>90%)	201	136	337
Incomplete	45	63	108
Unobserved	21	111	132
Total	267	310	577
Total time	3.97 Msec	1.30 Msec	5.28 Msec
Requested time	2.39 Msec	1.96 Msec	4.35 Msec
Target Completion (%)	77.8%	41.9%	61.6%

Swift Observing

• Swift observing time divided its time as follows:

All GRB obs:	56.3%
New triggers	8.4%
Planned follow-up	42.6%
GRB ToOs	5.5%
Non-GRB ToO*s:	8.8%
Calibration:	5.1%
Planned non-GRB targets:	17.6% (5 Msec/yr)
SAA & non-science:	12%

Cycle 3 will open ToO's to GI proposal

Cycle 4 will open planned non-GRB targets to GI proposal

* 153 ToO's requested/ 103 approved. Examples: Comet Tempel, RS Oph, supernovae

PENN<u>State</u>

Backup Slide – MAL Stats

Reporting Period	DOY Span	Total Passes	Successfu Passes	l Unsuccessfu Passes	
Nov-04	325-335	113	112	1	
Dec-04	336-366	317	314	3	
Jan-05	001-031	323	319	4	
Feb-05	032-059	308	307	1	
Mar-05	060-090	345	344	1	
Apr-05	091-120	335	335	0	
May-05	121-151	345	343	2	
Jun-05	152-181	334	328	6	
Jul-05	182-212	344	343	1	
Aug-05	213-243	346	340	6	
Sep-05	244-273	332	325	7	
Oct-05	274-304	344	343	1	
Nov-05	305-334	337	333	4	
Dec-05	335-365	345	344	1	
Jan-06	001-031	344	343	1	
Feb-06	032-059	200	198	2	
Mar-06	060-090	301	300	1	
Apr-06	091-120	294	294	0	
May-06	121-141	208	206	2	
Grand	l Totals	5607	5565	44	

Malindi Success Percentage since Launch: 99.25%

Backup Slide – Sci Uptime

	Hours	Mins	Total Mins Down	Cum mins Down	Days per month	Mins per month	Cum mins month	Monthly %	Since Apr 05%
Apr-05	0	0	0	0	30	43200	43200	100.0%	100.0%
May-05	13	26	806	806	31	44640	87840	98.2%	99.1%
Jun-05	86	87	5247	6053	30	43200	131040	87.9%	95.4%
Jul-05	37	60	2280	8333	31	44640	175680	94.9%	95.3%
Aug-05	0	0	0	8333	31	44640	220320	100.0%	96.2%
Sep-05	0	55	55	8388	30	43200	263520	99.9%	96.8%
Oct-05	1	50	110	8498	31	44640	308160	99.8%	97.2%
Nov-05	29	20	1760	10258	30	43200	351360	95.9%	97.1%
Dec-05	0	0	0	10258	31	44640	396000	100.0%	97.4%
Jan-06	9	49	589	10847	31	44640	440640	98.7%	97.5%
Feb-06	104	126	6366	17213	28	40320	480960	84.2%	96.4%
Mar-06	1	33	93	17306	31	44640	525600	99.8%	96.7%
Apr-06	22	70	1390	18696	30	43200	568800	96.8%	96.7%
May-06	4	7	247	18943	31	44640	613440	99.4%	96.9%

