TURBULENCE AND PARTICLE ACCELERATION

Vahe' Petrosian Stanford University

Siming Liu, A. Lazarian and graduate students

Krakow, June 2006

<u>OUTLINE</u>

I. PARTICLE ACCELERATION: General

II. STOCHASTIC ACCELERATION BY TURBULENCE

III. SOME APPLICATIONS

I. ACCELERATION: General

- A. Observed over a wide energy, time and spatial scales
 - **B.** Cosmic Rays (electrons, protons and ions; isotopes)
 - C. Radiating Sources (electrons and protons)

Some General Requirements

 Acceleration of Background Particles (no pre-acceleration)
 Losses at the Acceleration Site (Coulomb, Synchrotron, Compton) Astrophysical Sources Magnetized Plasmas

- 1. Solar Flares
- 2. Sgr A* (slow accreting AGNs)
- 3. Accretion Disks
- 4. Clusters of Galaxies
- 5. AGN Jets
- 6. GRBs

ACCELERATION MECHANISMS

A: Electric Fields: Parallel to B Field

B: Fermi Acceleration

1. Shock or Flow Divergence: First Order

2. Stochastic Acceleration: Second Order

II. ACCELERATION MECHANISMS

A. ELECTRIC FIELDS: \mathcal{E} (parallel to **B** field)

Acceleration Rate: $dp/dt = e\mathcal{E}$

Astrophysical Plasmas Highly Conductive: $\mathcal{E} \to 0$

Dricer Field: $\mathcal{E}_D = kT/(e\lambda_{\text{Coul}})$

 $\mathcal{E} < \mathcal{E}_D$: Energy Gain $\Delta E < kT(L/\lambda_{\text{Coul}})$

 $\mathcal{E} > \mathcal{E}_D$: Runaway Unstable Distribution Leads to

PLASMA TURBULENCE

1. Double Layers (DLs) in Earth's Magnetosphere

Multiple DLs: Difussive Process like

PLASMA TURBULENCE

2. Unipolar Induction in High *B* field of Neutron Stars Extreme Relativistic Energies: Pair Cascade

II. ACCELERATION MECHANISMS

B. FERMI ACCELERATION

Random scattering by moving scattering centers. Diffusive Process: Why Acceleration? More headon than trailing scatterings Phase space availability

 $\frac{1}{p^2}\frac{\partial}{\partial p}(p^2 D_{pp}\frac{\partial f}{\partial p}) \to \frac{\partial}{\partial E}(D(E)\frac{\partial N}{\partial E}) - \frac{\partial}{\partial E}(A(E)N)$ (1)

<u>1. SHOCK ACCELERATION:</u> (First Order Fermi) Energy Gain: $\dot{p} = \frac{p}{3} \frac{\partial u}{\partial x}$, $\delta p/p \sim U_{\text{shock}}/v$ Need Scattering Agent *i.e.* **TURBULENCE**

Diffusive Shocks

Scattering Rate D_{scat} Acceleration Rate $\sim (U_{sh}/v)^2 D_{\text{scat}}$

Relativistic Shocks

Most Energy Gained in First Passage Most Likely in High *B* Plasmas *e.g.* GRBs or AGN Jets Most of the Energy in Protons; How to convert to Electrons?

2. STOCHASTIC ACCELERATION: (Second Order Fermi)

Plasma Waves or **TURBULENCE** Energy Gain; *e.g.* Alfven Waves: $\delta p/p \sim (V_{\text{Alfven}}/v)^2$ Scattering Rate $\sim D_{\text{scat}}$ Acceleration Rate $\sim D_{pp}/p^2 \sim (V_{\text{Alfven}}/v)^2 D_{\text{scat}}$

•For $V_{\text{Alfven}} > V_{\text{sound}}$ TURBULENCE more efficient than SHOCKS

•At low energies or high *B* fields $D_{pp}/p^2 \gg D_{\text{scat}}$ and TURBULENCE efficient accelerator

ACCELERATION MECHANISMS

A: Electric Fields: Parallel to B Field

Unstable leads to TURBULENCE

- **B:** Fermi Acceleration
 - 1. Shock or Flow Divergence: First Order

Shocks and Scaterers; i.e. TURBULENCE

2. Stochastic Acceleration: Second Order

Scattering and Acceleration by TURBULENCE

TURBULENCE

Shock Acceleration

- Simple model very attractive
- Some unanswered questions:

Source Particles

Scattering Processes

Feedback and Nonlinear effects

Combined Turbulence and Shock Processes

II. STOCHASTIC ACCELERATION BY PLASMA TURBULENCE

- 1. Turbulence Generation
- 2. Turbulence Cascade
- 3. Turbulence Damping
- 4. Interactions with Particles
- 5. Spectrum of the Accelerated Particles

1. TURBULENCE GENERATION

Turbulence is Very Common in Astrophysics Hydrodynamic: Ordinary Reynolds number

 $R_e = LV/v >>> 1; \quad v =$ Viscosity

In MHD: Magnetic Reynolds number

 $R_m = LV/\eta >>> 1; \quad \eta = \text{Mag. Diff. Coeff.}$

Thus most flows or fluctuations lead to generation of turbulence on scales around L (or waves with k-vector $k_{min} = 1/L$)

2. TURBULENCE CASCADE

HD: Large eddies breaking into small ones Eddy turnover or *cascade* time $\tau_{cas} \approx 1/kv(k) < L/V_{sound}$

MHD: Nonlinear wave-wave interactions $\omega(k_1) = \omega(k_2) + \omega(k_3); \quad k_1 = k_2 + k_3$ $\tau_{cas} \leq L/V_{Alfven}$ Dispersion Relation: (Low Beta Plasma, $V_{Alfven} >> V_{Sound}$) $\omega(k) = k_{\parallel}V_{Alfven}, \quad kV_{Alfven}, \quad k_{\parallel}V_{Sound}$ For Alfven, Fast and Slow Modes

2. Cascade of MHD Turbulence

Cho & Lazarian 2002

3. TURBULENCE DAMPING

Viscous or Collisional Damping: $l = k^{-1} >> \lambda_{Coul}$ Collisonless Damping: $k^{-1} \ll \lambda_{Coul}$ Thermal: *Heating of Plasma* Nonthermal: Particle Acceleration Turbulence is damped for $k > k_{max}$ where $\tau_{damp}(\propto k^{-1}) = \tau_{cas}(\propto k^{-1/2})$

Inertial Range $k_{\min} < k < k_{\max}$

3. Turbulence Damping

Parallel (and perpendicular) waves are not damped

Turbulence Spectrum

General Features:

- Injection scale: k_{\min}
- Cascade and index q
- Damping scale or k_{\max}

Wavenumber

Kinetic Equation:

$$\frac{\partial W(\mathbf{k},t)}{\partial t} = \dot{Q}_{p}(\mathbf{k},t) - \gamma(\mathbf{k})W(\mathbf{k},t) + \nabla_{i}\left[D_{ij}\nabla_{j}W(\mathbf{k},t)\right] - \frac{W(\mathbf{k},t)}{T_{esc}^{W}(\mathbf{k})}$$

- $Q_p(\mathbf{k})$: Rate of wave generation.
- T_{esc}^{W} : Wave leakage timescale.
- $\gamma(k) = \gamma_e + \gamma_p$: The damping coefficients.
- D_{ij} : Wave diffusion tensor.

Magnetic fluctuations in Solar wind

Magnetic fluctuations in Solar wind

Leamon et al (1998)

4. Interactions with Particles: *Heating and Acceleration*

Resonant Wave-Particle Interactions

Interaction Rates Dispersion Relations Particle Kinetic Equation

Wave-Particle Interaction Rates

• Dominated by Resonant Interactions

$$D_{ij} = \pi e^2 \sum_{n=-\infty}^{+\infty} \int d^3k \langle d_{ij} \rangle \delta \left(\boldsymbol{k} \cdot \boldsymbol{v} - \omega + \frac{n\eta_0}{\gamma} \, \Omega_0 \right),$$

• Lower energy particles interacting with higher wavevectors or frequencies

Dispersion Relation for the Waves (Propagating Along Field Lines)

$$(ck)^{2} = \omega^{2} \left[1 - \sum_{i} \frac{\omega_{pi}^{2}}{\omega(\omega - q_{i}/|q_{i}|\Omega_{i})} \right]$$

Plasma Parameter:
$$\alpha = \frac{\omega_{pe}}{\Omega_{e}} = 1.0 \left(\frac{n}{10^{9} \text{cm}^{-3}} \right)^{1/2} \left(\frac{B_{0}}{100 \text{G}} \right)^{-1}$$

Abundances: Electrons, protons and alpha particles

Resonant Interaction *electrons*

Resonant Wave-Particle Interactions 4He and 3He

Simulations of The Wave Modes

From Opher et al.

General Dispersion Relation

$$\frac{\partial N}{\partial t} = \frac{\partial^2}{\partial E^2} (D_{EE}N) + \frac{\partial}{\partial E} [(\dot{E}_{\rm L} - A)N] - \frac{N}{T_{\rm esc}} + Q$$

$$A(E) = \frac{\mathrm{d}D_{EE}}{\mathrm{d}E} + D_{EE}\frac{2\gamma^2 - 1}{(\gamma^2 - 1)\gamma mc^2} + A_{shock}$$

$$T_{\rm esc} = \frac{L}{\sqrt{2}v} \left(1 + \frac{\sqrt{2}L}{v\tau_{\rm sc}} \right) \qquad \qquad \tau_{\rm sc} = \frac{1}{2} \int_{-1}^{1} \mathrm{d}\mu \frac{(1-\mu^2)^2}{D_{\mu\mu}}$$

A. KINETIC EQUATION

Liouville or Boltzmann equation in limit of many "small" scatterings leads to

The General Fokker-Planck equation:

$$\frac{\partial f}{\partial t} + v\mu \frac{\partial f}{\partial s} = \frac{1}{p^2} \frac{\partial}{\partial p} p^2 \left[D_{pp} \frac{\partial f}{\partial p} + D_{p\mu} \frac{\partial f}{\partial \mu} \right] + \frac{\partial}{\partial \mu} \left[D_{\mu\mu} \frac{\partial f}{\partial \mu} + D_{\mu p} \frac{\partial f}{\partial p} \right] - \frac{1}{p^2} \frac{\partial}{\partial p} (p^2 \dot{p}_L f) + S \,.$$

 $f(p, \mu, s, t)$; gyrophase averaged particle distribution

s is the distance along the background B field

S is a source term

1. Isotropic, High Energy Limit:

 $D_{\mu\mu} >> v/L \text{ and } D_{pp}/p^2$

$$F(p, s, t) \equiv \frac{1}{2} \int_{-1}^{1} \mathrm{d}\mu f(p, \mu, s, t),$$

$$\frac{\partial F}{\partial t} - \frac{\partial}{\partial z}\kappa_1 \frac{\partial F}{\partial z} = (pv)\frac{\partial \kappa_2}{\partial z}\frac{\partial F}{\partial p} - \frac{1}{p^2}\frac{\partial}{\partial p}(p^3v\kappa_2)\frac{\partial F}{\partial z} + \frac{1}{p^2}\frac{\partial}{\partial p}\left(p^4\kappa_3\frac{\partial F}{\partial p} - p^2\dot{p}_LF\right) + Q(p,s,t)\,,$$

$$\kappa_{1} = \frac{v^{2}}{8} \int_{-1}^{1} d\mu \frac{(1-\mu^{2})^{2}}{D_{\mu\mu}}, \quad \kappa_{2} = \frac{1}{4} \int_{-1}^{1} d\mu (1-\mu^{2}) \frac{D_{\mu p}}{p D_{\mu \mu}}$$

$$\kappa_{3} = \frac{1}{2} \int_{-1}^{1} d\mu (D_{pp} - D_{\mu p}^{2}/D_{\mu \mu}) p^{2}, \quad Q(p,s,t) \equiv \frac{1}{2} \int_{-1}^{1} d\mu S(p,\mu,s,t)$$

The acceleration and scattering times are

$$au_{ac}=1/\kappa_3 \quad au_{sc}=8\kappa_1/v^2.$$

COUPLED EQUATIONS

1. Kinetic Equations

$$\frac{\partial N}{\partial t} = \frac{\partial}{\partial E} \left[D_{EE} \frac{\partial N}{\partial E} - (A - \dot{E}_L) N \right] - \frac{N}{T_{\text{esc}}^p} + \dot{Q}^p$$

$$\frac{\partial W}{\partial t} = \frac{\partial}{\partial k_i} \left[D_{ij} \frac{\partial}{\partial k_j} W \right] - \Gamma(\mathbf{k}) W - \frac{W}{T^W_{\mathrm{esc}}(\mathbf{k})} + \dot{Q}^W$$

2. Energy Balance

 $\dot{\mathcal{W}}_{nonth} \equiv \int \Gamma_{nonth}(\mathbf{k}) W(\mathbf{k}) d^{3}k = \dot{\mathcal{E}} \equiv \int A(E) N(E) dE$

Rate Coefficients

$$A(E) = \frac{d[vp^2D(p)]}{4p^2dp} = \int_{k_{min}}^{\infty} d^3k W(\mathbf{k}) \Sigma(\mathbf{k},E)$$

$$\Gamma_{nonth}(\mathbf{k}) = \int_{E_0}^{\infty} dE N(E) \Sigma(\mathbf{k}, E)$$

5. Accelerated Particle Spectra Model Parameters

In principle: Density

DensitynTemperatureTMagnetic FieldBScale (geometry)LLevel of Turbulence $(\delta B / B)^2$

5. Accelerated Particle Spectra *Kinetic Equation Coefficients*

Acceleration rate or time Loss rate or time Escape rate or time Characteristic Times:

 au_{loss}

 \mathcal{T}_{ac}

 T_{esc}

 $\tau_{p}^{-1} \propto \Omega_{e} (\delta B / B)^{2}$ and $T_{cross} \approx L / v$

Some Attractive Features

- 1. Acceleration of Background Particles
- 2. Spectral Breaks
- 3. Heating and Acceleration
- 4. Proton (or ion) vs Electron Acceleration
- 5. Effects of **shocks** can be included

A SIMPLE EXAMPLE

$$\tau_{\rm ac} = \frac{C_1}{f_{\rm turb}} \frac{cR}{v_{\rm A}^2}$$

$$\tau_{\rm syn}(\gamma) = 9m_e^3 c^5 / 4e^4 B^2 \gamma = \tau_0 / \gamma$$

$$\gamma_{cr} = \frac{\tau_0}{4\tau_{\rm ac}} = \frac{9m_e^3 c^4 v_{\rm A}^2 f_{\rm turb}}{16e^4 R B^2 C_1} = 30 \left(\frac{R}{r_S}\right)^{-1} \left(\frac{n}{10^7 \,{\rm cm}^{-1}}\right)^{-1} \left(\frac{f_{\rm turb}}{C_1}\right)$$

Electron Spectra and $\gamma_{\min} = ?$

SPECTRAL HARDNESS

HEATING VS ACCELERATION

Electron vs Proton Acceleration

Protons vs. Electrons

 $\alpha = 0.98$

 $\alpha = 1.13$

Dependence on the Plasma Parameter

Protons vs. Electrons

SUMMARY

- Turbulence and plasma waves play major roles in non-thermal sources in energizing the plasma and accelerating particles.
- These are the dominant acceleration process at low energies and scattering agent at all energies.
- It can describe many features of radiation and particle spectra from a variety of sources.

III. Some Applications

Solar Flares

Sgr A* (slow accreting AGNs)

SOLAR FLARES

1. Electron Acceleration and Emission

2. Proton and Ion Acceleration and Emission

3. Solar Cosmic Rays (SEPs)

Model Description

A Simple Solar Flare

11032003, N09W77, X3.9

Event #11, Mason et al., ApJ, 574, 1039, 2002

Reames and Ng 2004

Acceleration of ³He and ⁴He by Parallel Propagating Waves

3He and Heavy Ion Enrichment

3. Ion Acceleration by Parallel Propagating Waves

Sgr A*

Proton and Electron Acceleration in the Galactic Center HESS Source

Electron Acceleration During the NIR and X-ray Flares

Structure of the Accretion Flow

De Villiers et al. 2003 ApJ

Broadband Spectrum

"Quiescent" Electron Emissions

53

Stochastic Particle Acceleration

Emission Processes During Flares

Thermal Synchrotron and SSC: Four Parameters $\mathcal{N}=3.8 \times 10^{42}$ $k_{\rm B}T=75m_{\rm e}c^2$

Liu et al. 2006

Constraining T & B with NIR and X-ray Spectra and flare rise time

Combination of

stochastic acceleration, MHD simulations, and observations over a broad range can be used to detect the properties of the black hole and its accretion flows.

SUMMARY

TURBULENCE AND STOCHASTIC ACCELERATION CAN PLAY IMPORTANT ROLES IN MANY ASTROPHYSICAL SOURCES

HESS

HESS Collaboration 2004

X-ray Flares from Sgr A*

(Baganoff et al. 2001)

In flare-state, Sgr A*'s X-ray luminosity can increase by more than one order of magnitude.

The X-ray flare lasted for a few hours. Significant variation in flux was seen over a 10 minute interval.

Sgr A* 19-20 June 2003 – NIR/X-ray Flare

Baganoff 2005

 $L_x \sim 6 \times 10^{33} \text{ erg s}^{-1}$ $L_{nir} \sim 5 \times 10^{34} \text{ erg s}^{-1}$