# NUCLEAR COMPOSITION IN GRBS DISKS AND JETS

ELENA MARIA ROSSI JILA, UC, BOULDER

COLLABORATORS

ANDREI M. BELOBORODOV MARTIN J. REES PHILIP J. ARMITAGE TIZIANA DI MATTEO

#### OUTLINE

• HYPER-ACCRETING DISKS : NEUTRINO COOLING SHAPE THE RADIAL AND VERTICAL STRUCTURE

NEUTRON LOADED OUTFLOW: DYNAMICS
+ THERMODYNAMIC

#### HYPER ACCRETING DISKS

GRB ARE POWERED BY ACCRETION DISKS OF A
0.1-10 Msun /sec ONTO A FEW Msun BLACK
HOLE (WOOSLEY 93, JANKA ET AL 99&01, FRYER ET AL 99..)

POPHAN ET AL 99; NARAYAN ET AL 01

# ENERGY BALANCE

vthick

#### $\rho \sim 10^9 - 10^{11} \,\mathrm{gr/cm^3}$ T $\sim 10^9 - 10^{11} \,\mathrm{K}$

 $\mathcal{V}$ 

 $\nu \overline{\nu} \nu$ 

 $\nu_{-thin}$ 

free n p

photo-disintegration of  $\alpha$ 

 $\alpha$  particles photon thick

radiative efficiently cooled by  $\nu$ 

# consistent calculation of nuclear composition and thermodynamical quantities:

for radial structure: Lee et al 05; Janiuk et al sub. & Chen and Beloborodov proc.

- thin disk dynamics: plane parallel atmosphere; no advection term: <sup>dP</sup>/<sub>dz</sub> = \rho GM/<sub>r<sup>3</sup></sub> z

  eq of state: gas pressure dominates
- $Y_p Y_n X_{nuc}$  as function of  $\rho$  and T
- radiative transfer equations

Rossi, Armitage & Di Matteo in prep







# VERTICAL STRUCTURE



#### NO MIXING: DE-NEUTRALISATION TIME TOO LONG



most of matter as Yp<0.5 ---> neutron loaded jet

# HOW DO NEUTRONS AFFECT THE OUTFLOW DYNAMICS & THERMODYNAMICS ?

#### Standard matter dominated fireball: protons: contract of finite



#### Fireball theory with neutrons

- Outflow with p+e+r+n
- r⇔e by Compton Scattering
- e⇔p by Coulomb Collision
- p⇔n by strong collision

 $p \Leftrightarrow p_n (n \Rightarrow p_n + e + v_e)$  by plasma instability

$$\mathbf{t}_{\beta} = 900 \ s \dots > \mathbf{R}_{\beta} = c \ t_{\beta} \mathbf{I}_{n}$$

#### *n-p* COLLISIONS AS MOMENTUM EXCHANGE AND FRICTION.

collision rate per n:

$$\Gamma_{rel} n_p \sigma v_{rel} = \frac{\Gamma_{rel}}{\tau_{np}},$$
  
$$\sigma \approx \sigma_{np} (c/v_{rel}); \ \sigma_{np} = 3 \times 10^{-26} \text{cm}^2.$$

mean momentum gained per n (isotropic scattering):

$$p_n = \langle p_p \rangle = m_p v_{rel} \Gamma_{rel} 0.5$$

mean force on a  $\boldsymbol{n}$ 

$$\frac{dp_n}{dt} = n_p \Gamma_{rel}^2 \sigma_{np} \beta_{rel} m_p c^2; \quad \frac{d\Gamma_n}{dr} = n_p \Gamma_{rel}^2 \beta_{rel} \sigma_{np}$$

Volume dissipation rate (proton rest-frame):

$$\frac{dq_p}{dt'} = \frac{n_n^p (\Gamma_{rel} - 1) m_p c^2}{2 \tau_{np}}.$$



#### TWO STREAM-INSTABILITY AS HEATING MECHANISM:

decay rate

$$\frac{dN_n}{dt'} = -\frac{N_n}{\Gamma_{rel}\tau_\beta} = -\frac{dN_p}{dt'},$$

the volume heating

$$\frac{dq_p}{dt'_{\beta}} = \frac{n_n^p}{\Gamma_{rel}\tau_{\beta}}(\Gamma_{rel} - 1)m_p c^2 0.5$$

#### Solving for dynamics and thermodynamics

8 unknown:  $\prod_{n} \prod_{p} \prod_{n} \prod_{p} \prod_{p} \prod_{e} \prod_{p} \prod_{n} n_{p} n_{n}$ 8 coupled equations:

1) energy conservation  $(T^{rv}_{,v}=0)$ 2) mass conservation  $(\mathcal{F}^{v}_{,v}=0)$ 

3)  $\mathcal{M}_{p} = f(\mathcal{M}_{n})$ , decay changes n/p

4)  $\prod_{n=f(\prod_{p})} = accelerating force of p on n$ 5-6-7-8)  $dE_{i} = dQ_{i} \cdot P_{i} dV$ , i=r,e,p,n





#### CONCLUSION

- GRB disks are neutron rich
- GRB jets are likely neutron loaded
- the nuclear composition affect the jet dynamics

#### **Nucleosynthesis**

(Beloborodov 03, Lemoine 02, Pruet et al 03)

|   |                         | Big Bang           | GRB                |
|---|-------------------------|--------------------|--------------------|
| • | Photon-to-baryon ratio: | ~3 10 <sup>9</sup> | ~8 104             |
| • | Exp. Timescale at NSy:  | ~100 s             | ~10 <sup>3</sup> s |
| • | n/p ratio prior to NSy: | n/p=1/7            | n/p>1              |

GRB has marginally successful nucleosynthesis OL/(p+n)~0.01-0.1 ---> jet with free p & n with n/p>1 The larger the entropy per baryon the stronger the effects









### ASSUMPTIONS

- HYDRODYNAMIC EVOLUTION
- UNIFORM OUTFLOW
- STEADY OUTFLOW
- SPHERICAL SYMMETRY
- NEGLECTING PAIRS (IMPORTANT ONLY FOR  $R < 50 R_0$ )
- NEGLECTING NEUTRINO LOSSES

#### **Conclusions**

- Fireballs are likely neutron loaded
- This influences dynamics and thermodynamics of the proton component
- The heating and deceleration depends on  $\eta$  and especially on n/p: <u>link with the accretion disk</u>

