
Jet Driving in GRB Sources
Nektarios Vlahakis

University of Athens

outline
• introduction: astrophysical jets
• the MHD description
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• alternatives



(scale =1000 AU, V∞ = afew100km/s)
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collimation at ∼100 Schwarzschild radii, γ∞ ∼ 10
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GRBs

? high Lorentz factors (compactness problem)

? collimated outflows (energy reservoir, achromatic afterglow
breaks)
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GRBs

? high Lorentz factors (compactness problem)

? collimated outflows (energy reservoir, achromatic afterglow
breaks)

☞ similar characteristics

☞ MHD offers a unified picture
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We need magnetic fields

? to extract energy (Poynting flux)

? to extract angular momentum

? to transfer energy and angular momentum to matter

? to collimate outflows and produce jets

? for synchrotron emission

? to explain polarization maps
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The structure of a magnetized outflow

A rotating source (disk or star) creates an axisymmetric outflow

Ω
ϖ

z

Ω

Assume steady-state and ideal
magnetohydrodynamics (MHD):

• Initially Vφ = $Ω � Vp, Bp & Bφ

• Flux freezing: velocity ‖ B plus
E ×B drift → V p ‖ Bp.

• Bp ∝ 1/$2, Bφ ∝ 1/$
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Critical surfaces

IIII ϖ0

pB

Bφ

ϖΑ

ϖ

z

slow

, Vp

E

fast

Alfven

Regularity conditions:

• slow → mass-loss rate Ṁj =
dM

dt

• Alfvén → angular momentum rate LṀj

(for relativistic flows,
Alfvén = light surface $A = c/Ω)

• fast → acceleration (nontrivial)
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Angular momentum extraction

L = µΩ$A
2 where µ =

dE

dSdt
dM

dSdt
c2

= maximum Lorentz factor

So rate of angular momentum = µΩ$2
AṀj (initially carried by the

field and later by the matter).

In the disk, rate = Ω$2
0Ṁa. If these are equal,

Ṁj

Ṁa

=
$2

0

µ$2
A

.

• in YSO confirmed by HST observations! (Woitas et al 2005)

• in GRBs Ṁa = 0.01M�s−1

(
Ṁj

10−6M�s−1

)( µ

400

)($A/$0

5

)2

(cf Popham et al 1999)

(This is equivalent to
dE

dt
≡ µṀjc

2 =
GMṀa

$0
.)
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Acceleration mechanisms

• thermal (due to ∇P ) → velocities up to Cs

• magnetocentrifugal (beads on wire - Blandford & Payne)

– in reality due to magnetic pressure
– initial half-opening angle ϑ > 30o

– the ϑ > 30o not necessary for nonnegligible P

– velocities up to $0Ω

• relativistic thermal (thermal fireball) gives γ ∼ ξi,

where ξ = enthalpy
mass× c2.

• magnetic – up to γ∞ = µ? Not always possible.
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All acceleration mechanisms can be seen in the energry
conservation equation

µ = ξγ +
Ω

ΨAc2
$Bφ

where µ, Ω, ΨA(=mass-to-magnetic flux ratio) are constants of
motion.

So γ ↑ when ξ ↓ (thermal, relativistic thermal), or,
$Bφ ↓⇔ Ip ↓ (magnetocentrifugal, magnetic).

At fast γ ≈ µ1/3 � µ. Can we reach γ∞ ∼ µ in the superfast
regime?
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The efficiency of the magnetic acceleration
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The Jp ×Bφ force strongly depends on
the angle between field-lines and
current-lines.

Are we free to choose these two lines?
NO! All MHD quantities are related to
each other and should be found by
solving the full system of equations.

From Ferraro’s law, $Bφ ≈ $2BpΩ/Vp.
So, the transfield force-balance
determines the acceleration.
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II

dl

ϖ

z A A+dA

The magnetic field minimizes its
energy under the condition of keeping
the magentic flux constant.

So, $Bφ ↓ for decreasing

$2Bp =
$2

2π$dl⊥
(BpdS︸ ︷︷ ︸

dA

) ∝ $

dl⊥
.

Expansion with increasing dl⊥/$

leads to acceleration (Vlahakis 2004).
The expansion ends in a more-or-less
uniform distribution $2Bp ≈ A (in a
quasi-monopolar shape).
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Conclusions on the magnetic acceleration

II

dl

ϖ

z A A+dAIf we start with a uniform distribution
the magnetic energy is already
minimum → no acceleration. Example:
Michel’s (1969) solution which gives
γ∞ ≈ µ1/3 � µ.
Also Beskin et al (1998); Bogovalov (2001)

who found quasi-monopolar solutions.

For any other (more realistic) initial
field distribution we have efficient
acceleration!
(details and an analytical estimation of the efficiency in

Vlahakis 2004, ApSS 293, 67).

example: if we start with $2Bp/A = 2
we have asymptotically $2Bp/A = 1
→ 50% efficiency
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On the collimation

IIII ϖ0

pB

Bφ

ϖΑ

pJ

ϖ

z

slow

, Vp

E

fast

Alfven

The Jp ×Bφ force contributes to the
collimation (hoop-stress paradigm).
In relativistic flows the electric force plays
an opposite role (a manifestation of the
high inertia of the flow).

• collimation by an external wind
(Bogovalov & Tsinganos 2005, for AGN jets)

• surrounding medium may play a role
(in the collapsar model)

• self-collimation mainly works at small
distances where the velocities are
mildly relativistic (Vlahakis & Königl 2003)
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For γ � 1, curvature radius R ∼ γ2$ (� $).

Collimation more difficult, but not impossible!

$

R
= −$

∂2$

∂z2

(
Bz

Bp

)3

∼
($

z

)2

Combining the above, we get

γ ∼ z

$

The same from

(t =)
z

Vz
=

$

V$
⇔ z

c
=

$√
c2 − V 2

z

≈ $

c/γ
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Application to GRB outflows
• is steady-state reasonable?

– Ω ∼ 104rad s−1 ⇒ many rotations during the engine’s activity (∼ 10s)
– the outflow is faster than the fastest signals propagating inside the flow
⇒ different shells are causally disconnected (frozen pulse)
(proof can be found in Vlahakis & Königl 2003, ApJ, 596, 1080)

• E =
c

4π

$Ω
c

Bp︸ ︷︷ ︸
E

Bφ × area × duration ⇒

BpBφ

(2× 1014G)2
=[

E
5× 1051erg

] [
area

4π × 1012cm2

]−1 [
$Ω

1010cm s−1

]−1 [duration
10s

]−1

– from the BH: Bp & 1015G (small Bφ, small area)
– from the disk: smaller magnetic field required ∼ 1014G

– If initially Bp/Bφ > 1, a trans-Alfv énic outflow is produced.

– If initially Bp/Bφ < 1, the outflow is super-Alfv énic from the start.
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Trans-Alfv énic Jets (NV & Königl 2001, 2003a)
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• $1 < $ < $6: Thermal acceleration - force free magnetic field
(γ ∝ $ , ρ0 ∝ $−3 , T ∝ $−1 , $Bφ = const, parabolic shape of fieldlines: z ∝ $2)

• $6 < $ < $8: Magnetic acceleration (γ ∝ $ , ρ0 ∝ $−3)

• $ = $8: cylindrical regime - equipartition γ∞ ≈ (−EBφ/4πγρ0Vp)∞
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Super-Alfv énic Jets (NV & Königl 2003b)
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• Thermal acceleration (γ ∝ $0.44 , ρ0 ∝ $−2.4 , T ∝ $−0.8 , Bφ ∝ $−1 , z ∝ $1.5)

• Magnetic acceleration (γ ∝ $0.44 , ρ0 ∝ $−2.4)

• cylindrical regime - equipartition γ∞ ≈ (−EBφ/4πγρ0Vp)∞
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Collimation
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? At $ = 108cm – where γ = 10 – the opening half-angle is already ϑ = 10o

? For $ > 108cm, collimation continues slowly (R ∼ γ2$)
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Other solutions

• Fendt & Ouyed (2004):

They used prescribed fieldlines (with $2Bp/A ∝ $−q) and found efficient
acceleration with γ∞ (their up,∞) ∼ µ (their σ).

Although the analysis is not complete (the transfield is not solved), the

results show the relation between line-shape and efficiency.
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• Beskin & Nokhrina (2006):
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By expanding the equations wrt 2/µ (their 1/σ) they found a parabolic
solution. The acceleration in the superfast regime is efficient, reaching
γ∞ ∼ µ.

The scaling γ ∝ $ is the same as in Vlahakis & Königl (2003a).
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• simulations:
many nice works (e.g., by De Villiers; Proga; McKinney), but
still there are numerical problems to cover all the outflow and
high Lorentz factors.

Enough to solve up to the fast point!
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Dissipation processes

• reconnection if there exist a small-scale field component (e.g., Drenkahn &
Spruit 2002 modified the induction equation by adding a term B/τ ). The
resulting gradient of B2/8π accelerates the flow, γ ∝ r1/3. The dissipated
energy is radiated (above the photosphere). Interesting to combine with
MHD (they considered monopolar flow), and to describe the reconnection
with a more exact way if possible.

• kink instability operates when (Bφ/Bp)co � 1, or, Bφ/γ � Bp. In the
Vlahakis & Königl trans-Alfvénic solutions this never happens, but in the
super-Alfvénic solutions it does.
Giannios & Spruit (2006) modeled the instability by adding a term ∼ B/τ in
the induction equation, with τ ≈ γ$/c. Results similar to Drenkahn & Spruit
(2002).
3D relativistic MHD simulations needed.

• minimum energy solutions by conserving helicity (Königl & Choudhouri
1985)
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Alternatives

• thermal driving

– cannot explain the observed angular momentum in YSO jets
– cannot explain pc-scale accelerations in AGN
– GRB photospheric emission would have been detectable

(Daigne & Mochkovitch 2002)

• outflow from black-hole vs disk

– no difference if the result is baryonic flow (disk outflow, or,
Fick difussion across fieldlines above a BH – Levinson &
Eichler 2003). In both cases we have MHD (although the
mechanism that transfers energy to the field is different:
Blandford & Znajek vs accretion).

– the field is higher in the BH-case (smaller ejection surface)
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• electromagnetic outflows:

– This corresponds to the case (subcase of MHD) where the
field distribution is force-free – already at the
minimum-energy

– extraction of pure electromagnetic energy (no baryons) –
Lyutikov & Blandford astro-ph/0312347

– the flow never becomes superfast
– current-driven instabilities lead to dissipation of magnetic

field and subsequent emission
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Conclusions

? MHD could explain the dynamics of GRB jets:

• acceleration (the flow is initially thermally, and subsequently
magnetically accelerated up to Lorentz factors
corresponding to rough equipartition between kinetic and
Poynting fluxes) – γ ∝ $β with β ≈ 1 in trans-Alfvénic flows
and β < 1 in super-Alfvénic from the start

• collimation (parabolic shape z ∝ $β+1)

? The paradigm of MHD jets works in a similar way in YSOs,
AGN, GRBs!
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